10 research outputs found
Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic
Fluoroquinolone (FQ)-induced DNA damage in persisters could promote antibiotic resistance. Here, using time-lapse microscopy and genetic analyses, the authors show that after a single round of FQ treatment, SOS response in persisters accelerates the development of resistance to unrelated antibiotics
Epigenetics and its role in male infertility
Male infertility is a common and complex problem affecting 1 in 20 men. Despite voluminous research in this field, in many cases, the underlying causes are unknown. Epigenetic factors play an important role in male infertility and these have been studied extensively. Epigenetic modifications control a number of processes within the body, but this review will concentrate on male fertility and the consequences of aberrant epigenetic regulation/modification. Many recent studies have identified altered epigenetic profiles in sperm from men with oligozoospermia and oligoasthenoteratozoospermia. During gametogenesis and germ cell maturation, germ cells undergo extensive epigenetic reprogramming that involves the establishment of sex-specific patterns in the sperm and oocytes. Increasing evidence suggests that genetic and environmental factors can have negative effects on epigenetic processes controlling implantation, placentation and fetal growth. This review provides an overview of the epigenetic processes (histone-to-protamine exchange and epigenetic reprogramming post-fertilization), aberrant epigenetic reprogramming and its association with fertility, possible risks for ART techniques, testicular cancer and the effect of environmental factors on the epigenetic processes
The physiology of growth arrest: uniting molecular and environmental microbiology
Most bacteria spend the majority of their time in prolonged states of very low metabolic activity and little or no growth, in which electron donors, electron acceptors and/or nutrients are limited, but cells are poised to undergo rapid division cycles when resources become available. These non-growing states are far less studied than other growth states, which leaves many questions regarding basic bacterial physiology unanswered. In this Review, we discuss findings from a small but diverse set of systems that have been used to investigate how growth-arrested bacteria adjust metabolism, regulate transcription and translation, and maintain their chromosomes. We highlight major questions that remain to be addressed, and suggest that progress in answering them will be aided by recent methodological advances and by dialectic between environmental and molecular microbiology perspectives
Sperm DNA damage in male infertility: etiologies, assays, and outcomes
Male factor infertility is the sole cause of infertility in approximately 20% of infertile couples, with an additional 30% to 40% secondary to both male and female factors. Current means of evaluation of male factor infertility remains routine semen analysis including seminal volume, pH, sperm concentration, motility, and morphology. However, approximately 15% of patients with male factor infertility have a normal semen analysis and a definitive diagnosis of male infertility often cannot be made as a result of routine semen analysis. Attention has focused on the role of sperm nuclear DNA integrity in male factor infertility. Here we review the structure of human sperm chromatin, the etiology and mechanisms of sperm DNA damage, current tests available to assess sperm DNA integrity, and effect of sperm DNA integrity on reproductive outcomes