14 research outputs found

    Chaos and Elliptical Galaxies

    Get PDF
    Recent results on chaos in triaxial galaxy models are reviewed. Central mass concentrations like those observed in early-type galaxies -- either stellar cusps, or massive black holes -- render most of the box orbits in a triaxial potential stochastic. Typical Liapunov times are 3-5 crossing times, and ensembles of stochastic orbits undergo mixing on time scales that are roughly an order of magnitude longer. The replacement of the regular orbits by stochastic orbits reduces the freedom to construct self-consistent equilibria, and strong triaxiality can be ruled out for galaxies with sufficiently high central mass concentrations.Comment: uuencoded gziped PostScript, 12 pages including figure

    Sampling the Integers with Low Relative Error

    Get PDF
    Randomness is an essential part of any secure cryptosystem, but many constructions rely on distributions that are not uniform. This is particularly true for lattice based cryptosystems, which more often than not make use of discrete Gaussian distributions over the integers. For practical purposes it is crucial to evaluate the impact that approximation errors have on the security of a scheme to provide the best possible trade-off between security and performance. Recent years have seen surprising results allowing to use relatively low precision while maintaining high levels of security. A key insight in these results is that sampling a distribution with low relative error can provide very strong security guarantees. Since floating point numbers provide guarantees on the relative approximation error, they seem a suitable tool in this setting, but it is not obvious which sampling algorithms can actually profit from them. While previous works have shown that inversion sampling can be adapted to provide a low relative error (Pöppelmann et al., CHES 2014; Prest, ASIACRYPT 2017), other works have called into question if this is possible for other sampling techniques (Zheng et al., Eprint report 2018/309). In this work, we consider all sampling algorithms that are popular in the cryptographic setting and analyze the relationship of floating point precision and the resulting relative error. We show that all of the algorithms either natively achieve a low relative error or can be adapted to do so

    Kinetic Transport Simulation of ICRF Heating in Tokamak Plasmas

    No full text
    corecore