263 research outputs found

    Random-phase approximation and its applications in computational chemistry and materials science

    Full text link
    The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.Comment: 25 pages, 11 figures, published online in J. Mater. Sci. (2012

    Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP

    Full text link
    Using the OPAL detector at LEP, the running of the effective QED coupling alpha(t) is measured for space-like momentum transfer from the angular distribution of small-angle Bhabha scattering. In an almost ideal QED framework, with very favourable experimental conditions, we obtain: Delta alpha(-6.07GeV^2) - Delta alpha(-1.81GeV^2) = (440 pm 58 pm 43 pm 30) X 10^-5, where the first error is statistical, the second is the experimental systematic and the third is the theoretical uncertainty. This agrees with current evaluations of alpha(t).The null hypothesis that alpha remains constant within the above interval of -t is excluded with a significance above 5sigma. Similarly, our results are inconsistent at the level of 3sigma with the hypothesis that only leptonic loops contribute to the running. This is currently the most significant direct measurment where the running alpha(t) is probed differentially within the measured t range.Comment: 43 pages, 12 figures, Submitted to Euro. Phys. J.

    Recommendations for the treatment of epilepsy in adult patients in general practice in Belgium: an update

    Get PDF
    In 2008, a group of Belgian epilepsy experts published recommendations for antiepileptic drug (AED) treatment of epilepsies in adults and children. Selection of compounds was based on the registration and reimbursement status in Belgium, the level of evidence for efficacy, common daily practice and the personal views and experiences of the authors. In November 2011 the validity of these recommendations was reviewed by the same group of Belgian epilepsy experts who contributed to the preparation of the original paper. The recommendations made in 2008 for initial monotherapy in paediatric patients were still considered to be valid, except for the first choice treatment for childhood absence epilepsy. This update therefore focuses on the treatment recommendations for initial monotherapy and add-on treatment in adult patients. Several other relevant aspects of treatment with AEDs are addressed, including considerations for optimal combination of AEDs (rational polytherapy), pharmacokinetic properties, pharmacodynamic and pharmacokinetic interaction profile, adverse effects, comorbidity, treatment of elderly patients, AED treatment during pregnancy, and generic substitution of AEDs

    Search for the standard model Higgs boson at LEP

    Get PDF

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Energy Sprawl or Energy Efficiency: Climate Policy Impacts on Natural Habitat for the United States of America

    Get PDF
    Concern over climate change has led the U.S. to consider a cap-and-trade system to regulate emissions. Here we illustrate the land-use impact to U.S. habitat types of new energy development resulting from different U.S. energy policies. We estimated the total new land area needed by 2030 to produce energy, under current law and under various cap-and-trade policies, and then partitioned the area impacted among habitat types with geospatial data on the feasibility of production. The land-use intensity of different energy production techniques varies over three orders of magnitude, from 1.9–2.8 km2/TW hr/yr for nuclear power to 788–1000 km2/TW hr/yr for biodiesel from soy. In all scenarios, temperate deciduous forests and temperate grasslands will be most impacted by future energy development, although the magnitude of impact by wind, biomass, and coal to different habitat types is policy-specific. Regardless of the existence or structure of a cap-and-trade bill, at least 206,000 km2 will be impacted without substantial increases in energy efficiency, which saves at least 7.6 km2 per TW hr of electricity conserved annually and 27.5 km2 per TW hr of liquid fuels conserved annually. Climate policy that reduces carbon dioxide emissions may increase the areal impact of energy, although the magnitude of this potential side effect may be substantially mitigated by increases in energy efficiency. The possibility of widespread energy sprawl increases the need for energy conservation, appropriate siting, sustainable production practices, and compensatory mitigation offsets
    • 

    corecore