15 research outputs found

    Atropselective syntheses of (-) and (+) rugulotrosin A utilizing point-to-axial chirality transfer

    Full text link
    Chiral, dimeric natural products containing complex structures and interesting biological properties have inspired chemists and biologists for decades. A seven-step total synthesis of the axially chiral, dimeric tetrahydroxanthone natural product rugulotrosin A is described. The synthesis employs a one-pot Suzuki coupling/dimerization to generate the requisite 2,2'-biaryl linkage. Highly selective point-to-axial chirality transfer was achieved using palladium catalysis with achiral phosphine ligands. Single X-ray crystal diffraction data were obtained to confirm both the atropisomeric configuration and absolute stereochemistry of rugulotrosin A. Computational studies are described to rationalize the atropselectivity observed in the key dimerization step. Comparison of the crude fungal extract with synthetic rugulotrosin A and its atropisomer verified that nature generates a single atropisomer of the natural product.P50 GM067041 - NIGMS NIH HHS; R01 GM099920 - NIGMS NIH HHS; GM-067041 - NIGMS NIH HHS; GM-099920 - NIGMS NIH HH

    Catalytic enantioselective syn hydration of enones in water using a DNA-based catalyst

    Get PDF
    The enantioselective addition of water to olefins in an aqueous environment is a common transformation in biological systems, but was beyond the ability of synthetic chemists. Here, we present the first examples of a non-enzymatic catalytic enantioselective hydration of enones, for which we used a catalyst that comprises a copper complex, based on an achiral ligand, non-covalently bound to (deoxy)ribonucleic acid, which is the only source of chirality present under the reaction conditions. The chiral β-hydroxy ketone product was obtained in up to 82% enantiomeric excess. Deuterium-labelling studies demonstrated that the reaction is diastereospecific, with only the syn hydration product formed. So far, this diastereospecific and enantioselective reaction had no equivalent in conventional homogeneous catalysis
    corecore