70 research outputs found

    A C-terminal cysteine residue is required for peptide-based inhibition of the NGF/TrkA interaction at nM concentrations:implications for peptide-based analgesics

    Get PDF
    Inhibition of the NGF/TrkA interaction presents an interesting alternative to the use of non-steroidal anti-inflammatories and/or opioids for the control of inflammatory, chronic and neuropathic pain. Most prominent of the current approaches to this therapy is the antibody Tanezumab, which is a late-stage development humanized monoclonal antibody that targets NGF. We sought to determine whether peptides might similarly inhibit the NGF/TrkA interaction and so serve as future therapeutic leads. Starting from two peptides that inhibit the NGF/TrkA interaction, we sought to eliminate a cysteine residue close to the C-terminal of both sequences, by an approach of mutagenic analysis and saturation mutagenesis of mutable residues. Elimination of cysteine from a therapeutic lead is desirable to circumvent manufacturing difficulties resulting from oxidation. Our analyses determined that the cysteine residue is not required for NGF binding, but is essential for inhibition of the NGF/TrkA interaction at pharmacologically relevant peptide concentrations. We conclude that a cysteine residue is required within potential peptide-based therapeutic leads and hypothesise that these peptides likely act as dimers, mirroring the dimeric structure of the TrkA receptor

    HIV-1 pol Diversity among Female Bar and Hotel Workers in Northern Tanzania

    Get PDF
    A national ART program was launched in Tanzania in October 2004. Due to the existence of multiple HIV-1 subtypes and recombinant viruses co-circulating in Tanzania, it is important to monitor rates of drug resistance. The present study determined the prevalence of HIV-1 drug resistance mutations among ART-naive female bar and hotel workers, a high-risk population for HIV-1 infection in Moshi, Tanzania. A partial HIV-1 pol gene was analyzed by single-genome amplification and sequencing in 45 subjects (622 pol sequences total; median number of sequences per subject, 13; IQR 5ā€“20) in samples collected in 2005. The prevalence of HIV-1 subtypes A1, C, and D, and inter-subtype recombinant viruses, was 36%, 29%, 9% and 27%, respectively. Thirteen different recombination patterns included D/A1/D, C/A1, A1/C/A1, A1/U/A1, C/U/A1, C/A1, U/D/U, D/A1/D, A1/C, A1/C, A2/C/A2, CRF10_CD/C/CRF10_CD and CRF35_AD/A1/CRF35_AD. CRF35_AD was identified in Tanzania for the first time. All recombinant viruses in this study were unique, suggesting ongoing recombination processes among circulating HIV-1 variants. The prevalence of multiple infections in this population was 16% (n = 7). Primary HIV-1 drug resistance mutations to RT inhibitors were identified in three (7%) subjects (K65R plus Y181C; N60D; and V106M). In some subjects, polymorphisms were observed at the RT positions 41, 69, 75, 98, 101, 179, 190, and 215. Secondary mutations associated with NNRTIs were observed at the RT positions 90 (7%) and 138 (6%). In the protease gene, three subjects (7%) had M46I/L mutations. All subjects in this study had HIV-1 subtype-specific natural polymorphisms at positions 36, 69, 89 and 93 that are associated with drug resistance in HIV-1 subtype B. These results suggested that HIV-1 drug resistance mutations and natural polymorphisms existed in this population before the initiation of the national ART program. With increasing use of ARV, these results highlight the importance of drug resistance monitoring in Tanzania

    Role of Synucleins in Alzheimerā€™s Disease

    Get PDF
    Alzheimerā€™s disease (AD) and Parkinsonā€™s disease (PD) are the most common causes of dementia and movement disorders in the elderly. While progressive accumulation of oligomeric amyloid-Ī² protein (AĪ²) has been identified as one of the central toxic events in AD leading to synaptic dysfunction, accumulation of Ī±-synuclein (Ī±-syn) resulting in the formation of oligomers has been linked to PD. Most of the studies in AD have been focused on investigating the role of AĪ² and Tau; however, recent studies suggest that Ī±-syn might also play a role in the pathogenesis of AD. For example, fragments of Ī±-syn can associate with amyloid plaques and AĪ² promotes the aggregation of Ī±-syn in vivo and worsens the deficits in Ī±-syn tg mice. Moreover, Ī±-syn has also been shown to accumulate in limbic regions in AD, Downā€™s syndrome, and familial AD cases. AĪ² and Ī±-syn might directly interact under pathological conditions leading to the formation of toxic oligomers and nanopores that increase intracellular calcium. The interactions between AĪ² and Ī±-syn might also result in oxidative stress, lysosomal leakage, and mitochondrial dysfunction. Thus, better understanding the steps involved in the process of AĪ² and Ī±-syn aggregation is important in order to develop intervention strategies that might prevent or reverse the accumulation of toxic proteins in AD

    Biomarker candidates of neurodegeneration in Parkinsonā€™s disease for the evaluation of disease-modifying therapeutics

    Get PDF
    Reliable biomarkers that can be used for early diagnosis and tracking disease progression are the cornerstone of the development of disease-modifying treatments for Parkinsonā€™s disease (PD). The German Society of Experimental and Clinical Neurotherapeutics (GESENT) has convened a Working Group to review the current status of proposed biomarkers of neurodegeneration according to the following criteria and to develop a consensus statement on biomarker candidates for evaluation of disease-modifying therapeutics in PD. The criteria proposed are that the biomarker should be linked to fundamental features of PD neuropathology and mechanisms underlying neurodegeneration in PD, should be correlated to disease progression assessed by clinical rating scales, should monitor the actual disease status, should be pre-clinically validated, and confirmed by at least two independent studies conducted by qualified investigators with the results published in peer-reviewed journals. To date, available data have not yet revealed one reliable biomarker to detect early neurodegeneration in PD and to detect and monitor effects of drug candidates on the disease process, but some promising biomarker candidates, such as antibodies against neuromelanin, pathological forms of Ī±-synuclein, DJ-1, and patterns of gene expression, metabolomic and protein profiling exist. Almost all of the biomarker candidates were not investigated in relation to effects of treatment, validated in experimental models of PD and confirmed in independent studies

    Tunable magnetoresistance in an asymmetrically coupled single molecule junction

    Get PDF
    Phenomena that are highly sensitive to magnetic fields can be exploited in sensors and non-volatile memories1. The scaling of such phenomena down to the single-molecule level2,3 may enable novel spintronic devices4. Here, we report magnetoresistance in a single-molecule junction arising from negative differential resistance that shifts in a magnetic field at a rate two orders of magnitude larger than Zeeman shifts. This sensitivity to the magnetic field produces two voltage-tunable forms of magnetoresistance, which can be selected via the applied bias. The negative differential resistance is caused by transient charging5,6,7 of an iron phthalocyanine (FePc) molecule on a single layer of copper nitride (Cu2N) on a Cu(001) surface, and occurs at voltages corresponding to the alignment of sharp resonances in the filled and empty molecular states with the Cu(001) Fermi energy. An asymmetric voltage-divider effect enhances the apparent voltage shift of the negative differential resistance with magnetic field, which inherently is on the scale of the Zeeman energy8. These results illustrate the impact that asymmetric coupling to metallic electrodes can have on transport through molecules, and highlight how this coupling can be used to develop molecular spintronic applications
    • ā€¦
    corecore