27 research outputs found

    Genetic Detection and Characterization of Lujo Virus, a New Hemorrhagic Fever–Associated Arenavirus from Southern Africa

    Get PDF
    Lujo virus (LUJV), a new member of the family Arenaviridae and the first hemorrhagic fever–associated arenavirus from the Old World discovered in three decades, was isolated in South Africa during an outbreak of human disease characterized by nosocomial transmission and an unprecedented high case fatality rate of 80% (4/5 cases). Unbiased pyrosequencing of RNA extracts from serum and tissues of outbreak victims enabled identification and detailed phylogenetic characterization within 72 hours of sample receipt. Full genome analyses of LUJV showed it to be unique and branching off the ancestral node of the Old World arenaviruses. The virus G1 glycoprotein sequence was highly diverse and almost equidistant from that of other Old World and New World arenaviruses, consistent with a potential distinctive receptor tropism. LUJV is a novel, genetically distinct, highly pathogenic arenavirus

    Host-Species Transferrin Receptor 1 Orthologs Are Cellular Receptors for Nonpathogenic New World Clade B Arenaviruses

    Get PDF
    The ability of a New World (NW) clade B arenavirus to enter cells using human transferrin receptor 1 (TfR1) strictly correlates with its ability to cause hemorrhagic fever. Amapari (AMAV) and Tacaribe (TCRV), two nonpathogenic NW clade B arenaviruses that do not use human TfR1, are closely related to the NW arenaviruses that cause hemorrhagic fevers. Here we show that pseudotyped viruses bearing the surface glycoprotein (GP) of AMAV or TCRV can infect cells using the TfR1 orthologs of several mammalian species, including those of their respective natural hosts, the small rodent Neacomys spinosus and the fruit bat Artibeus jamaicensis. Mutation of one residue in human TfR1 makes it a functional receptor for TCRV, and mutation of four residues makes it a functional receptor for AMAV. Our data support an in vivo role for TfR1 in the replication of most, if not all, NW clade B arenaviruses, and suggest that with modest changes in their GPs the nonpathogenic arenaviruses could use human TfR1 and emerge as human pathogens

    Isolates of Liao Ning Virus from Wild-Caught Mosquitoes in the Xinjiang Province of China in 2005

    Get PDF
    Liao ning virus (LNV) is related to Banna virus, a known human-pathogen present in south-east Asia. Both viruses belong to the genus Seadornavirus, family Reoviridae. LNV causes lethal haemorrhage in experimentally infected mice. Twenty seven isolates of LNV were made from mosquitoes collected in different locations within the Xinjiang province of north-western China during 2005. These mosquitoes were caught in the accommodation of human patients with febrile manifestations, or in animal barns where sheep represent the main livestock species. The regions where LNV was isolated are affected by seasonal encephalitis, but are free of Japanese encephalitis (JE). Genome segment 10 (Seg-10) (encoding cell-attachment and serotype-determining protein VP10) and Seg-12 (encoding non-structural protein VP12) were sequenced for multiple LNV isolates. Phylogenetic analyses showed a less homogenous Seg-10 gene pool, as compared to segment 12. However, all of these isolates appear to belong to LNV type-1. These data suggest a relatively recent introduction of LNV into Xinjiang province, with substitution rates for LNV Seg-10 and Seg-12, respectively, of 2.29Γ—10βˆ’4 and 1.57Γ—10βˆ’4 substitutions/nt/year. These substitution rates are similar to those estimated for other dsRNA viruses. Our data indicate that the history of LNV is characterized by a lack of demographic fluctuations. However, a decline in the LNV population in the late 1980s - early 1990s, was indicated by data for both Seg-10 and Seg-12. Data also suggest a beginning of an expansion in the late 1990s as inferred from Seg-12 skyline plot

    Natural Host Relationships of Hantaviruses Native to Western Venezuela

    No full text
    Strains of CaΓ±o Delgadito virus (CADV) and Maporal virus (MAPV) were isolated from 25 (8.9%) of the 280 rodents captured on farms in 1997 in western Venezuela. The results of analyses of laboratory and zoographic data indicated that Alston's cotton rat (Sigmodon alstoni) is the principal host of CADV, horizontal virus transmission is the dominant mode of CADV transmission in Alston's cotton rat in nature, a pygmy rice rat (Oligoryzomys sp.) is the principal host of MAPV, and the natural host relationships of CADV and MAPV are highly specific

    Diversity Among Tacaribe Serocomplex Viruses (Family Arenaviridae) Naturally Associated with the White-Throated Woodrat (Neotoma albigula) in the Southwestern United States

    No full text
    Bayesian analyses of glycoprotein precursor and nucleocapsid protein gene sequences indicated that arenaviruses naturally associated with white-throated woodrats in central Arizona are phylogenetically closely related to the Whitewater Arroyo virus prototype strain AV 9310135, which originally was isolated from a white-throated woodrat captured in northwestern New Mexico. Pairwise comparisons of glycoprotein precursor and nucleocapsid protein amino acid sequences revealed extensive diversity among arenaviruses isolated from white-throated woodrats captured in different counties in central Arizona and extensive diversity between these viruses and Whitewater Arroyo virus strain AV 9310135. It was concluded that the viruses isolated from the white-throated woodrats captured in Arizona represent 2 novel species (Big Brushy Tank virus and Tonto Creek virus) and that these species should be included with Whitewater Arroyo virus in a species complex within the Tacaribe serocomplex (family Arenaviridae, genus Arenavirus)

    Antibodies to Tacaribe Serocomplex Viruses (Family Arenaviridae, Genus Arenavirus) in Cricetid Rodents from New Mexico, Texas, and Mexico

    No full text
    Blood samples from 4893 cricetid rodents were tested for antibody (immunoglobulin G) to Whitewater Arroyo virus and AmaparΓ­ virus to extend our knowledge of the natural host range and geographical distribution of Tacaribe serocomplex viruses in North America. Antibodies to arenaviruses were found in northern pygmy mice (Baiomys taylori), woodrats (Neotoma spp.), northern grasshopper mice (Onychomys leucogaster), oryzomys (Oryzomys spp.), deermice (Megadontomys nelsoni and Peromyscus spp.), harvest mice (Reithrodontomys spp.), and cotton rats (Sigmodon spp.) captured in New Mexico, Texas, or Mexico. Comparison of endpoint antibody titers to Whitewater Arroyo virus and AmaparΓ­ virus in individual blood samples indicated that the Tacaribe complex viruses enzootic in Texas and Mexico are antigenically diverse
    corecore