20 research outputs found

    A Critical Assessment of the Effects of Bt Transgenic Plants on Parasitoids

    Get PDF
    The ecological safety of transgenic insecticidal plants expressing crystal proteins (Cry toxins) from the bacterium Bacillus thuringiensis (Bt) continues to be debated. Much of the debate has focused on nontarget organisms, especially predators and parasitoids that help control populations of pest insects in many crops. Although many studies have been conducted on predators, few reports have examined parasitoids but some of them have reported negative impacts. None of the previous reports were able to clearly characterize the cause of the negative impact. In order to provide a critical assessment, we used a novel paradigm consisting of a strain of the insect pest, Plutella xylostella (herbivore), resistant to Cry1C and allowed it to feed on Bt plants and then become parasitized by Diadegma insulare, an important endoparasitoid of P. xylostella. Our results indicated that the parasitoid was exposed to a biologically active form of the Cy1C protein while in the host but was not harmed by such exposure. Parallel studies conducted with several commonly used insecticides indicated they significantly reduced parasitism rates on strains of P. xylostella resistant to these insecticides. These results provide the first clear evidence of the lack of hazard to a parasitoid by a Bt plant, compared to traditional insecticides, and describe a test to rigorously evaluate the risks Bt plants pose to predators and parasitoids

    Could resistance to insecticides in Plutella xylostella (Lepidoptera:Plutellidae) be overcome by insecticide mixtures?

    No full text
    To investigate if synergism occurs between pyrethroids, organophosphates and new insecticides, we tested representatives of these compounds (bifenthrin, chlorpyrifos, spinosad, indoxacarb and emamectin) against the diamondback moth (Plutella xylostella). Larvicidal activity of these insecticides was assessed separately and together on a susceptible strain (Lab-UK) of P. xylostella as well as a field population collected from Multan. The field population showed significant resistance to chlorpyrifos (331 100-fold), bifenthrin (45 200-fold), emamectin (1800-fold), spinosad (11-fold) and indoxacarb (5600-fold) when compared with the Lab-UK population. When insecticides were mixed based on LC50 and tested at serial concentrations against Lab-UK, significant synergy (CI < 1) occurred between bifenthrin, spinosad and emamectin. In contrast, the interaction between bifenthrin and indoxacarb was additive (CI B< 1). The toxicity of bifenthrin against the field population increased significantly (P < 0.01) when combined with spinosad, emamectin and indoxacarb. Synergistic effects could be attributed to the complementary modes of action by these insecticide classes acting on different components of nerve impulse transmission (which are not identical forbifenthrin and indoxacarb either). However, chlorpyrifos/bifenthrin mixture was not significantly different either from bifenthrin or chlorpyrifos alone, indicating an additive affect. In combination with spinosad and emamectin, tested against the resistant field population, the toxicity of chlorpyrifos increased significantly and even more so with indoxacarb. Mixtures could also give rise to multiple resistance that may extend across other chemical classes and thus become difficult to manage. Therefore, alternative strategies such as mosaics or rotations should be considered. That is, though synergistic effects have been found, this should not be followed up as a strategy to manage resistant field populations
    corecore