34 research outputs found
Recombinant HIV Envelope Proteins Fail to Engage Germline Versions of Anti-CD4bs bNAbs
Vaccine candidates for HIV-1 so far have not been able to elicit broadly neutralizing antibodies (bNAbs) although they express the epitopes recognized by bNAbs to the HIV envelope glycoprotein (Env). To understand whether and how Env immunogens interact with the predicted germline versions of known bNAbs, we screened a large panel (N:56) of recombinant Envs (from clades A, B and C) for binding to the germline predecessors of the broadly neutralizing anti-CD4 binding site antibodies b12, NIH45-46 and 3BNC60. Although the mature antibodies reacted with diverse Envs, the corresponding germline antibodies did not display Env-reactivity. Experiments conducted with engineered chimeric antibodies combining the mature and germline heavy and light chains, respectively and vice-versa, revealed that both antibody chains are important for the known cross-reactivity of these antibodies. Our results also indicate that in order for b12 to display its broad cross-reactivity, multiple somatic mutations within its VH region are required. A consequence of the failure of the germline b12 to bind recombinant soluble Env is that Env-induced B-cell activation through the germline b12 BCR does not take place. Our study provides a new explanation for the difficulties in eliciting bNAbs with recombinant soluble Env immunogens. Our study also highlights the need for intense efforts to identify rare naturally occurring or engineered Envs that may engage the germline BCR versions of bNAbs
Generation, Characterization and Epitope Mapping of Two Neutralizing and Protective Human Recombinant Antibodies against Influenza A H5N1 Viruses
The development of new therapeutic targets and strategies to control highly pathogenic avian influenza (HPAI) H5N1 virus infection in humans is urgently needed. Broadly cross-neutralizing recombinant human antibodies obtained from the survivors of H5N1 avian influenza provide an important role in immunotherapy for human H5N1 virus infection and definition of the critical epitopes for vaccine development.We have characterized two recombinant baculovirus-expressed human antibodies (rhAbs), AVFluIgG01 and AVFluIgG03, generated by screening a Fab antibody phage library derived from a patient recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus. AVFluIgG01 cross-neutralized the most of clade 0, clade 1, and clade 2 viruses tested, in contrast, AVFluIgG03 only neutralized clade 2 viruses. Passive immunization of mice with either AVFluIgG01 or AVFluIgG03 antibody resulted in protection from a lethal H5N1 clade 2.3 virus infection. Furthermore, through epitope mapping, we identify two distinct epitopes on H5 HA molecule recognized by these rhAbs and demonstrate their potential to protect against a lethal H5N1 virus infection in a mouse model.Importantly, localization of the epitopes recognized by these two neutralizing and protective antibodies has provided, for the first time, insight into the human antibody responses to H5N1 viruses which contribute to the H5 immunity in the recovered patient. These results highlight the potential of a rhAbs treatment strategy for human H5N1 virus infection and provide new insight for the development of effective H5N1 pandemic vaccines
The 4C5 Cell-Impermeable Anti-HSP90 Antibody with Anti-Cancer Activity, Is Composed of a Single Light Chain Dimer
MAb 4C5 is a cell impermeable, anti-HSP90 murine monoclonal antibody, originally produced using hybridoma technology. We have previously shown that mAb 4C5 specifically recognizes both the α- and to a lesser extent the β-isoform of HSP90. Additionally, in vitro and in vivo studies revealed that by selectively inhibiting the function of cell-surface HSP90, mAb 4C5 significantly impairs cancer cell invasion and metastasis. Here we describe the reconstitution of mAb 4C5 into a mouse-human chimera. More importantly we report that mAb 4C5 and consequently its chimeric counterpart are completely devoid of heavy chain and consist only of a functional kappa light chain dimer. The chimeric antibody is shown to retain the original antibody's specificity and functional properties. Thus it is capable of inhibiting the function of surface HSP90, leading to reduced cancer cell invasion in vitro. Finally, we present in vivo evidence showing that the chimeric 4C5 significantly inhibits the metastatic deposit formation of MDA-MB-453 cells into the lungs of SCID mice. These data suggest that a chimeric kappa light chain antibody could be potentially used as an anti-cancer agent, thereby introducing a novel type of antibody fragment, with reduced possible adverse immunogenic effects, into cancer therapeutics
Anti-HIV-1 Response Elicited in Rabbits by Anti-Idiotype Monoclonal Antibodies Mimicking the CD4-Binding Site
Antibodies against conserved epitopes on HIV-1 envelope glycoproteins (Env), such as the gp120 CD4-binding site (CD4bs), could contribute to protection against HIV-1. Env-based immunogens inducing such a response could be a major component of future anti-HIV-1 strategies. In this proof-of-concept study we describe the generation of two anti-idiotype (AI) murine antibodies mimicking the CD4bs epitope. Sera were collected from long-term non-progressor patients to obtain CD4bs-directed IgG, through sequential purification steps. The purified IgG were then used as Fab fragments to immunize mice for hybridoma generation. Two hybridomas (P1 and P2), reacting only against the CD4bs-directed IgG, were identified and characterized. The P1 and P2 antibodies were shown to recognize the idiotype of the broadly neutralizing anti-CD4bs human mAb b12. Both P1 and P2 Fabs were able to induce a strong anti-gp120 response in rabbits. Moreover, the rabbits' sera were shown to neutralize two sensitive tier 1 strains of HIV-1 in an Env-pseudotype neutralization assay. In particular, 3/5 rabbits in the P1 group and 1/5 in the P2 group showed greater than 80% neutralizing activity against the HXB2 pseudovirus. Two rabbits also neutralized the pseudovirus HIV-MN. Overall, these data describe the first anti-idiotypic vaccine approach performed to generate antibodies to the CD4bs of the HIV-1 gp120. Although future studies will be necessary to improve strength and breadth of the elicited neutralizing response, this proof-of-concept study documents that immunogens designed on the idiotype of broadly neutralizing Abs are feasible and could help in the design of future anti-HIV strategies
Increased Sensitivity to Broadly Neutralizing Antibodies of End-Stage Disease R5 HIV-1 Correlates with Evolution in Env Glycosylation and Charge
BACKGROUND: Induction of broadly neutralizing antibodies, such as the monoclonal antibodies IgGb12, 2F5 and 2G12, is the objective of most antibody-based HIV-1 vaccine undertakings. However, despite the relative conserved nature of epitopes targeted by these antibodies, mechanisms underlying the sensitivity of circulating HIV-1 variants to broadly neutralizing antibodies are not fully understood. Here we have studied sensitivity to broadly neutralizing antibodies of HIV-1 variants that emerge during disease progression in relation to molecular alterations in the viral envelope glycoproteins (Env), using a panel of primary R5 HIV-1 isolates sequentially obtained before and after AIDS onset. PRINCIPAL FINDINGS: HIV-1 R5 isolates obtained at end-stage disease, after AIDS onset, were found to be more sensitive to neutralization by TriMab, an equimolar mix of the IgGb12, 2F5 and 2G12 antibodies, than R5 isolates from the chronic phase. The increased sensitivity correlated with low CD4(+) T cell count at time of virus isolation and augmented viral infectivity. Subsequent sequence analysis of multiple env clones derived from the R5 HIV-1 isolates revealed that, concomitant with increased TriMab neutralization sensitivity, end-stage R5 variants displayed envelope glycoproteins (Envs) with reduced numbers of potential N-linked glycosylation sites (PNGS), in addition to increased positive surface charge. These molecular changes in Env also correlated to sensitivity to neutralization by the individual 2G12 monoclonal antibody (mAb). Furthermore, results from molecular modeling suggested that the PNGS lost at end-stage disease locate in the proximity to the 2G12 epitope. CONCLUSIONS: Our study suggests that R5 HIV-1 variants with increased sensitivity to broadly neutralizing antibodies, including the 2G12 mAb, may emerge in an opportunistic manner during severe immunodeficiency as a consequence of adaptive molecular Env changes, including loss of glycosylation and gain of positive charge
HIV-Specific Antibodies Capable of ADCC Are Common in Breastmilk and Are Associated with Reduced Risk of Transmission in Women with High Viral Loads
There are limited data describing the functional characteristics of HIV-1 specific antibodies in breast milk (BM) and their role in breastfeeding transmission. The ability of BM antibodies to bind HIV-1 envelope, neutralize heterologous and autologous viruses and direct antibody-dependent cell cytotoxicity (ADCC) were analyzed in BM and plasma obtained soon after delivery from 10 non-transmitting and 9 transmitting women with high systemic viral loads and plasma neutralizing antibodies (NAbs). Because subtype A is the dominant subtype in this cohort, a subtype A envelope variant that was sensitive to plasma NAbs was used to assess the different antibody activities. We found that NAbs against the subtype A heterologous virus and/or the woman's autologous viruses were rare in IgG and IgA purified from breast milk supernatant (BMS) – only 4 of 19 women had any detectable NAb activity against either virus. Detected NAbs were of low potency (median IC50 value of 10 versus 647 for the corresponding plasma) and were not associated with infant infection (p = 0.58). The low NAb activity in BMS versus plasma was reflected in binding antibody levels: HIV-1 envelope specific IgG titers were 2.2 log10 lower (compared to 0.59 log10 lower for IgA) in BMS versus plasma. In contrast, antibodies capable of ADCC were common and could be detected in the BMS from all 19 women. BMS envelope-specific IgG titers were associated with both detection of IgG NAbs (p = 0.0001)and BMS ADCC activity (p = 0.014). Importantly, BMS ADCC capacity was inversely associated with infant infection risk (p = 0.039). Our findings indicate that BMS has low levels of envelope specific IgG and IgA with limited neutralizing activity. However, this small study of women with high plasma viral loads suggests that breastmilk ADCC activity is a correlate of transmission that may impact infant infection risk
A Directed Molecular Evolution Approach to Improved Immunogenicity of the HIV-1 Envelope Glycoprotein
A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences
Cell-Cell Transmission Enables HIV-1 to Evade Inhibition by Potent CD4bs Directed Antibodies
HIV is known to spread efficiently both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Likewise to what extent cell-cell transmission is vulnerable to inhibition by neutralizing antibodies and entry inhibitors remains to be determined. Here we report on neutralizing antibody activity during cell-cell transmission using specifically tailored experimental strategies which enable unambiguous discrimination between the two transmission routes. We demonstrate that the activity of neutralizing monoclonal antibodies (mAbs) and entry inhibitors during cell-cell transmission varies depending on their mode of action. While gp41 directed agents remain active, CD4 binding site (CD4bs) directed inhibitors, including the potent neutralizing mAb VRC01, dramatically lose potency during cell-cell transmission. This implies that CD4bs mAbs act preferentially through blocking free virus transmission, while still allowing HIV to spread through cell-cell contacts. Thus providing a plausible explanation for how HIV maintains infectivity and rapidly escapes potent and broadly active CD4bs directed antibody responses in vivo
Targeted Cytotoxic Therapy Kills Persisting HIV Infected Cells During ART
Antiretroviral therapy (ART) can reduce HIV levels in plasma to undetectable levels, but rather little is known about the effects of ART outside of the peripheral blood regarding persistent virus production in tissue reservoirs. Understanding the dynamics of ART-induced reductions in viral RNA (vRNA) levels throughout the body is important for the development of strategies to eradicate infectious HIV from patients. Essential to a successful eradication therapy is a component capable of killing persisting HIV infected cells during ART. Therefore, we determined the in vivo efficacy of a targeted cytotoxic therapy to kill infected cells that persist despite long-term ART. For this purpose, we first characterized the impact of ART on HIV RNA levels in multiple organs of bone marrow-liver-thymus (BLT) humanized mice and found that antiretroviral drug penetration and activity was sufficient to reduce, but not eliminate, HIV production in each tissue tested. For targeted cytotoxic killing of these persistent vRNA+ cells, we treated BLT mice undergoing ART with an HIV-specific immunotoxin. We found that compared to ART alone, this agent profoundly depleted productively infected cells systemically. These results offer proof-of-concept that targeted cytotoxic therapies can be effective components of HIV eradication strategies
Isolation of Natural Anti-FcεRIα Autoantibodies from Healthy Donors.
Natural antibodies are defined as antibodies detected in a healthy individual without active immunization. These antibodies are specific for exoantigens, as well as for autoantigens, mostly without any pathogenic role. Most of the studies conducted with natural (auto-) antibodies have been performed using affinity purified antibodies from individual sera or polyclonal Ig-preparations such as Intravenous Ig (IVIg). For in-depth analysis of such autoantibodies affinity-purified Ig-preparations from healthy individuals are of no use, as they are oligoclonal or polyclonal. Thus, there is a need of human monoclonal autoantibodies. Human monoclonal autoantibodies can be produced from B cells isolated from humans; however, this requires the screening of a large number of antibodies to identify one among them specific to an antigen. Using the phage display technology we generated such autoantibodies against the alpha subunit of the high-affinity IgE receptor (FcεRIα). Here we describe the step-by-step protocol for the generation of such libraries and the isolation of autoantibodies by affinity panning
