8 research outputs found

    Photon correction quality factors for ionization chambers in an epithermal neutron beam

    No full text
    Photon quality correction factors (kQy) for ionization chamber photon dosimetry in an epithermal neutron beam were determined according to a modified absorbed dose to water formalism which was extended to mixed radiation fields. We have studied two commercially available ionization chambers in the epithermal neutron beam optimized for BNCT at the facility at Studsvik, Sweden. One of the chambers is nominally neutron insensitive; a magnesium-walled detector flushed with pure argon gas (denoted by Mg/Ar). The second chamber has approximately the same sensitivity for neutrons and photons; it is considered a 'tissue equivalent' detector, with A-150 walls flushed with methane-based tissue-equivalent gas (denoted by TE/TE). The kQy-factors in epithermal neutron beams have previously been assumed to be equal to unity or estimated from measurements in clinical accelerator produced photon beams. In this work the kQy-factors have been determined from absorbed dose calculations using cavity theory together with Monte Carlo derived electron fluences obtained with the MCNP4c system for water and PMMA phantoms. The calculated quality correction factors differ substantially from unity, being in the order of 10% for the Mg/Ar detector at shallow phantom depths, and between 2 and 4% for other depths and for the TE/TE chamber

    Reference dosimetry at the boron neutron capture therapy facility at Studsvik

    No full text
    The purpose of this publication was to present and evaluate the methods for reference dosimetry in the epithermal neutron beam at the neutron capture therapy facility at Studsvik. Measurements were performed in a PMMA phantom and in air using ionization chambers and activation probes in order to calibrate the epithermal neutron beam. Appropriate beam-dependant calibration factors were determined using Monte Carlo methods for the detectors used in the present publication. Using the presented methodology, the photon, neutron and total absorbed dose to PMMA was determined with an estimated uncertainty of +/- 5.0%, +/- 25%, and +/- 5.5% (2 SD), respectively. The uncertainty of the determination of the photon absorbed dose was comparable to the case in conventional radiotherapy, while the uncertainty of the neutron absorbed dose is much higher using the present methods. The thermal neutron group fluence, i.e., the neutron fluence in the energy interval 0-0.414 eV, was determined with an estimated uncertainty of +/- 2.8% (2 SD), which is acceptable for dosimetry in epithermal neutron beams

    Quality assurance of patient dosimetry in boron neutron capture therapy

    No full text
    The verification of the correctness of planned and executed treatments is imperative for safety in radiotherapy. The purpose of the present work is to describe and evaluate the quality assurance (QA) procedures for patient dosimetry implemented at the boron neutron capture therapy (BNCT) facility at Studsvik, Sweden. The dosimetric complexity of the mixed neutron/photon field during BNCT suggests a careful verification of routine procedures, specifically the treatment planning calculations. In the present study, two methods for QA of patient dosimetry are presented. The first is executed prior to radiotherapy and involves an independent check of the planned absorbed dose to be delivered to a point in the patient for each treatment field. The second QA procedure involves in vivo dosimetry measurements using post-treatment activation analysis. Absorbed dose conversion factors taking the difference in material composition and geometry of the patient and the PMMA phantom used for reference dosimetry were determined using the Monte Carlo method. The agreement of the QA procedure prior to radiotherapy reveals an acceptably small deviation for 60 treatment fields of +/-4.2% (1 SD), while the in vivo dosimetry method presented may benefit from improvements, as the deviations observed were quite substantial (+/-12%, 1 SD), and were unlikely to be due to actual errors in the clinical dosimetry
    corecore