14 research outputs found

    Male pygmy hippopotamus influence offspring sex ratio

    Get PDF
    Pre-determining fetal sex is against the random and equal opportunity that both conceptus sexes have by nature. Yet, under a wide variety of circumstances, populations shift their birth sex ratio from the expected unity. Here we show, using fluorescence in situ hybridization, that in a population of pygmy hippopotamus (Choeropsis liberiensis) with 42.5% male offspring, males bias the ratio of X- and Y-chromosome-bearing spermatozoa in their ejaculates, resulting in a 0.4337±0.0094 (mean±s.d.) proportion of Y-chromosome-bearing spermatozoa. Three alternative hypotheses for the shifted population sex ratio were compared: female counteract male, female indifferent, or male and female in agreement. We conclude that there appears little or no antagonistic sexual conflict, unexpected by prevailing theories. Our results indicate that males possess a mechanism to adjust the ratio of X- and Y-chromosome-bearing spermatozoa in the ejaculate, thereby substantially expanding currently known male options in sexual conflict

    Multiscale Modeling Examples: New Polyelectrolyte Nanocomposite Membranes for Perspective Fuel Cells and Flow Batteries

    Full text link
    Renewable energy production from fuel cells and energy storage in flow batteries are becoming increasingly important in the modern energy transition. Both batteries use polyelectrolyte membranes (PEMs) to allow proton transport. In this chapter, both PEMs and PEMs-based nanocomposites have been discussed using various simulational approaches. A coarse-grained model of a Nafion film capped by the substrates with variable wettability has been used to simulate nanocomposites of PEMs by classical molecular-dynamics (MD) method. Classical MD modeling results have also been reviewed for a PEM-graphene oxide nanocomposite internal structure and dynamics. Ab-initio simulations have been implemented to describe the proton transfer pathways in anhydrous PEMs. Finally, the large-scale mesoscopic simulations have been introduced to shed light on the water domain features present in the hydrated PEMs. A brief description of polybenzimidazole membrane as electrolyte and Ionic Liquids as dopants for fuel cells is also presented

    Mitochondrial Genetics of Yeast

    Full text link
    corecore