9 research outputs found
Selective depletion of CD14+ CD16+ monocytes by glucocorticoid therapy
Glucocorticoids (GC) are potent anti-inflammatory and immunosuppressive agents that act on many cells of the body, including monocytes. Here we show that a 5-day course of high dose GC therapy differentially affected the CD14++ and the CD14+ CD16+ monocyte subpopulations in 10 patients treated for multiple sclerosis. While the classical (CD14++) monocytes exhibited a substantial increase from 495 ± 132 to 755 ± 337 cells/μl, the CD14+ CD16+ monocytes responded with a pronounced decrease from 36 ± 15 to 2 ± 3 cells/μl (P < 0.001). In 4/10 patients the CD14+ CD16+ monocytes fell below detection limits (< 0.2 cells/μl). This observation was confirmed when the CD14+ CD16+ monocytes were identified by virtue of their low CD33 expression as these cells decreased as well. After discontinuation of GC therapy the CD14+ CD16+ monocytes reappeared and reached normal levels after 1 week. The profound depletion of CD14+ CD16+ monocytes by GC as described here is a novel effect of GC action in vivo and may contribute to GC-mediated immunosuppression. Determination of the number of this monocyte subset may also serve to monitor the effectiveness of GC therapy in patients requiring immunosuppressive treatment
Anti-inflammatory effects of a new tumour necrosis factor-alpha (TNF-α) inhibitor (CNI-1493) in collagen-induced arthritis (CIA) in rats
A recently developed compound, a multivalent guanylhydrazone (CNI-1493) that inhibits TNF-α production by suppressing TNF-α translational efficiency, was administered in an experimental model of collagen type II-induced arthritis in DA rats. CNI-1493 was injected daily intraperitoneally either before the onset of arthritis or after the establishment of clinical disease. Prophylactic treatment with CNI-1493 significantly prevented or delayed the onset and suppressed the severity of arthritis in a dose-dependent manner. Therapeutic intervention with CNI-1493 in established joint disease also resulted in a significant reduction of clinical signs of arthritis in treated animals. No severe side-effects were noted when animals were treated with daily CNI-1493 doses up to 5 mg/kg. An immunohistochemical study was performed which demonstrated that CNI-1493 led to a reduced expression of TNF-α at the site of disease activity. Thus, CNI-1493 with documented inhibitory effects on TNF-α synthesis, has proven successful in ameliorating the course of arthritis in CIA. We believe that the use of a compound such as CNI-1493 with a defined mode of action provides a useful tool for dissecting and understanding important pathogenic mechanisms operating in the development of chronic arthritis