34 research outputs found
Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy
Cellular functions are fundamentally regulated by intracellular temperature, which influences biochemical reactions inside a cell. Despite the important contributions to biological and medical applications that it would offer, intracellular temperature mapping has not been achieved. Here we demonstrate the first intracellular temperature mapping based on a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. The spatial and temperature resolutions of our thermometry were at the diffraction limited level (200 nm) and 0.18–0.58 °C. The intracellular temperature distribution we observed indicated that the nucleus and centrosome of a COS7 cell, both showed a significantly higher temperature than the cytoplasm and that the temperature gap between the nucleus and the cytoplasm differed depending on the cell cycle. The heat production from mitochondria was also observed as a proximal local temperature increase. These results showed that our new intracellular thermometry could determine an intrinsic relationship between the temperature and organelle function
Influence of Doping and Excitation Powers on Optical Thermometry in Yb3+-Er3+ doped CaWO4
Structural evaluations and temperature dependent photoluminescence characterizations of Eu3+-activated SrZrO3 hollow spheres for luminescence thermometry applications
Nd3+-doped amorphous calcium yttrium silicate ceramic powder for near-infrared thermometry
Mapping three-dimensional temperature in microfluidic chip
Three-dimensional (3D) temperature mapping method with high spatial resolution and acquisition rate is of vital importance in evaluating thermal processes in micro-environment. We have synthesized a new temperature-sensitive functional material (Rhodamine B functionalized Polydimethylsiloxane). By performing optical sectioning of this material, we established an advanced method for visualizing the micro-scale 3D thermal distribution inside microfluidic chip with down to 10 ms temporal resolution and 2 ~ 6°C temperature resolution depending the capture parameters. This method is successfully applied to monitor the local temperature variation throughout micro-droplet heat transfer process and further reveal exothermic nanoliter droplet reactions to be unique and milder than bench-top experiment
