6,804 research outputs found
Electrical conduction in annealed semi-insulating InP
Variable-temperature current-voltage has been used to study the conduction properties of Fe-doped semi-insulating (SI) InP in the as-grown and annealed states. It is found that the trap-filling (TF) process disappears gradually with lengthening of annealing time. This phenomenon is explained by the decrease of the concentration of the empty Fe deep level (Fe 3+) that is caused by the thermally induced donor defect formation. The TF process cannot be observed in annealed undoped and long-time annealed Fe-doped SI InP material. The breakdown field of annealed undoped and Fe-doped SI InP is much lower than that of as-grown Fe-doped InP material. The breakdown field decreases with decreasing of temperature indicating an impact ionization process. This breakdown behavior is also in agreement with the fact that the concentration of the empty deep level in annealed InP is lowered. © 2000 American Institute of Physics.published_or_final_versio
Effects of annealing on the electrical properties of Fe-doped InP
The electrical properties of Fe-doped semi-insulating (SI) InP were investigated before and after annealing. The annealing conditions were controlled by changing either the temperature or duration. Correlation between the change of electrical parameters with the change of defect concentration at different annealing stage was observed. The defects and the change of the concentrations in Fe-doped SI InP were detected by room-temperature photocurrent spectroscopy.published_or_final_versio
Positron-lifetime study of compensation defects in undoped semi-insulating InP
Positron-lifetime and infrared-absorption spectroscopies have been used to investigate the compensation defects that render undoped n-type liquid encapsulated Czochralski-grown InP semi-insulating under high-temperature annealing. The positron measurements, carried out over the temperature range of 25-300 K, reveal in the as-grown material a positron lifetime of 282±5 ps which we associate with either the isolated indium vacancy V 3- In or related hydrogen complexes. The shallow donor complex V InH 4, responsible for much of the n-type conductivity and the strong infrared absorption signal at 4320 nm, is ruled out as a significant trapping site on the grounds that its neutral state is present at too low a concentration. After annealing at 950°C, in conjunction with the disappearance of the V InH 4 infrared-absorption signal, trapping into V In-related centers is observed to increase slightly, and an additional positron trapping defect having a lifetime of 330 ps appears at a concentration of ∼10 16 cm -3, indicating divacancy trapping. These results support the recent suggestion that the V InH 4 complex present in as-grown InP dissociates during annealing, forming V InH (3-n)- n (0≤n≤3) complexes and that the recombination of V In with a phosphorus atom results in the formation of EL2-like deep donor P In antisite defect, which compensates the material. It is suggested that the divacancy formed on annealing is V InV P, and that this defect is probably a by-product of the P In antisite formation.published_or_final_versio
Probing deep level centers in GaN epilayers with variable-frequency capacitance-voltage characteristics of AuGaN Schottky contacts
Under identical preparation conditions, AuGaN Schottky contacts were prepared on two kinds of GaN epilayers with significantly different background electron concentrations and mobility as well as yellow emission intensities. Current-voltage (I-V) and variable-frequency capacitance-voltage (C-V) characteristics show that the Schottky contacts on the GaN epilayer with a higher background carrier concentration and strong yellow emission exhibit anomalous reverse-bias I-V and C-V characteristics. This is attributed to the presence of deep level centers. Theoretical simulation of the low-frequency C-V curves leads to a determination of the density and energy level position of the deep centers. © 2006 American Institute of Physics.published_or_final_versio
Probing deep level centers in GaN epilayers with variable-frequency capacitance-voltage characteristics of Au/GaN Schottky contacts
Author name used in this publication: X. M. Tao2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Electrical and FT-IR measurements of undoped N-type INP materials grown from various stoichiometric melts
P-rich, In-rich and Stoichiometric undoped InP melts have been synthesed by phosphorus in-situ injection method. InP crystal ingots have been grown from these melts by Liquid Encapsulated Czochralski (LEC). Samples from these ingots grown from various Stoichiometric melts have been characterized by Hall Effect and Fourier Transform Infrared (FT-IR) spectroscopy measurements respectively. The Hall Effect measurement results indicate that the net carrier concentration of P-inch undoped InP is higher than that of In-rich and Stoichiometric undoped InP materials. FT-IR spectroscopy measurements reveal that there are intensive absorption peaks which have been proved to be hydrogen related indium vacancy complex V InH 4. By comparing FT-IR spectra, it is found that P-rich InP material has the most intensive absorption peak of V InH 4, while In-rich InP material has the weakest absorption peak.published_or_final_versio
Influence of indium-tin-oxide thin-film quality on reverse leakage current of indium-tin-oxide/n-GaN Schottky contacts
Author name used in this publication: X. M. Tao2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Thermally induced conduction type conversion in n-type InP
n-type semiconducting InP is changed into p-type semiconducting by short time annealing at 700 °C. Further annealing for a longer time leads to a second conduction-type conversion changing the material back to n type again but with a much higher resistivity. These conduction conversions indicate the formation of both acceptor and donor defects and the progressive variation of their relative concentrations during annealing. © 1999 American Institute of Physics.published_or_final_versio
Native donors and compensation in Fe-doped liquid encapsulated Czochralski InP
Undoped and Fe-doped liquid encapsulated Czochralski (LEC) InP has been studied by Hall effect, current-voltage (I-V), and infrared absorption (IR) spectroscopy. The results indicate that a native hydrogen vacancy complex donor defect exists in as-grown LEC InP. By studying the IR results, it is found that the concentration of this donor defect in Fe-doped InP is much higher than that in undoped InP. This result is consistent with the observation that a much higher concentration of Fe 2+ than the apparent net donor concentration is needed to achieve the semi-insulating (SI) property in InP. By studying the I-V and IR results of Fe-doped InP wafers sliced from different positions on an ingot, the high concentration of Fe 2+ is found to correlate with the existence of this hydrogen complex. The concentration of this donor defect is high in wafers from the top of an ingot. Correspondingly, a higher concentration of Fe 2+ can be detected in these wafers. These results reveal the influence of the complex defect on the compensation and uniformity of Fe-doped SI InP materials. © 2001 American Institute of Physics.published_or_final_versio
Model of defect formation in annealed undoped and Fe-doped liquid encapsulated Czochralski InP
Infrared absorption spectroscopy measurements indicate high concentration of hydrogen indium vacancy complex VInH4 in undoped and Fe-doped liquid encapsulated Czochralski (LEC) InP. Annealed undoped and Fe-doped semi-insulating (SI) InP are studied by room temperature Hall effect measurement and photocurrent spectroscopy. The results show that a mid gap donor defect and some shallow intrinsic defects are formed by high temperature annealing. This mid gap defect is shown to be phosphorus antisite related. Defect formation process and compensation mechanism in annealed SI InP are discussed.published_or_final_versio
- …
