14 research outputs found

    Analysis of energy expenditure in diet-induced obese rats

    Full text link
    Development of obesity in animals is affected by energy intake, dietary composition, and metabolism. Useful models for studying this metabolic problem are Sprague-Dawley rats fed low-fat (LF) or high-fat (HF) diets beginning at 28 days of age. Through experimental design, their dietary intakes of energy, protein, vitamins, and minerals per kg body weight (BW) do not differ in order to eliminate confounding factors in data interpretation. The 24-h energy expenditure of rats is measured using indirect calorimetry. A regression model is constructed to accurately predict BW gain based on diet, initial BW gain, and the principal component scores of respiratory quotient and heat production. Time-course data on metabolism (including energy expenditure) are analyzed using a mixed effect model that fits both fixed and random effects. Cluster analysis is employed to classify rats as normal-weight or obese. HF-fed rats are heavier than LF-fed rats, but rates of their heat production per kg non-fat mass do not differ. We conclude that metabolic conversion of dietary lipids into body fat primarily contributes to obesity in HF-fed rats

    Interferon Tau Alleviates Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance by Regulating Macrophage Polarization

    Get PDF
    Chronic adipose tissue inflammation is a hallmark of obesity-induced insulin resistance and anti-inflammatory agents can benefit patients with obesity-associated syndromes. Currently available type I interferons for therapeutic immunomodulation are accompanied by high cytotoxicity and therefore in this study we have examined anti-inflammatory effects of interferon tau (IFNT), a member of the type I interferon family with low cellular toxicity even at high doses. Using a diet-induced obesity mouse model, we observed enhanced insulin sensitivity in obese mice administered IFNT compared to control mice, which was accompanied by a significant decrease in secretion of proinflammatory cytokines and elevated anti-inflammatory macrophages (M2) in adipose tissue. Further investigations revealed that IFNT is a potent regulator of macrophage activation that favors anti-inflammatory responses as evidenced by activation of associated surface antigens, production of anti-inflammatory cytokines, and activation of selective cell signaling pathways. Thus, our study demonstrates, for the first time, that IFNT can significantly mitigate obesity-associated systemic insulin resistance and tissue inflammation by controlling macrophage polarization, and thus IFNT can be a novel bio-therapeutic agent for treating obesity-associated syndromes and type 2 diabetes

    Application of survival analysis methodology to the quantitative analysis of LC-MS proteomics data

    Full text link
    Motivation: Protein abundance in quantitative proteomics is often based on observed spectral features derived from liquid chromatography mass spectrometry (LC-MS) or LC-MS/MS experiments. Peak intensities are largely non-normal in distribution. Furthermore, LC-MS-based proteomics data frequently have large proportions of missing peak intensities due to censoring mechanisms on low-abundance spectral features. Recognizing that the observed peak intensities detected with the LC-MS method are all positive, skewed and often left-censored, we propose using survival methodology to carry out differential expression analysis of proteins. Various standard statistical techniques including non-parametric tests such as the Kolmogorov-Smirnov and Wilcoxon-Mann-Whitney rank sum tests, and the parametric survival model and accelerated failure time-model with log-normal, log-logistic and Weibull distributions were used to detect any differentially expressed proteins. The statistical operating characteristics of each method are explored using both real and simulated datasets.Results: Survival methods generally have greater statistical power than standard differential expression methods when the proportion of missing protein level data is 5% or more. In particular, the AFT models we consider consistently achieve greater statistical power than standard testing procedures, with the discrepancy widening with increasing missingness in the proportions. © The Author 2012. Published by Oxford University Press. All rights reserved

    Multiple indicators, multiple causes measurement error models

    Full text link
    © 2014 John Wiley & Sons, Ltd. Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this paper are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methods for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. As a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure

    Functional multiple indicators, multiple causes measurement error models

    Full text link
    © 2017, The International Biometric Society Objective measures of oxygen consumption and carbon dioxide production by mammals are used to predict their energy expenditure. Since energy expenditure is not directly observable, it can be viewed as a latent construct with multiple physical indirect measures such as respiratory quotient, volumetric oxygen consumption, and volumetric carbon dioxide production. Metabolic rate is defined as the rate at which metabolism occurs in the body. Metabolic rate is also not directly observable. However, heat is produced as a result of metabolic processes within the body. Therefore, metabolic rate can be approximated by heat production plus some errors. While energy expenditure and metabolic rates are correlated, they are not equivalent. Energy expenditure results from physical function, while metabolism can occur within the body without the occurrence of physical activities. In this manuscript, we present a novel approach for studying the relationship between metabolic rate and indicators of energy expenditure. We do so by extending our previous work on MIMIC ME models to allow responses that are sparsely observed functional data, defining the sparse functional multiple indicators, multiple cause measurement error (FMIMIC ME) models. The mean curves in our proposed methodology are modeled using basis splines. A novel approach for estimating the variance of the classical measurement error based on functional principal components is presented. The model parameters are estimated using the EM algorithm and a discussion of the model's identifiability is provided. We show that the defined model is not a trivial extension of longitudinal or functional data methods, due to the presence of the latent construct. Results from its application to data collected on Zucker diabetic fatty rats are provided. Simulation results investigating the properties of our approach are also presented

    Instrumental variable approach to estimating the scalar-on-function regression model with measurement error with application to energy expenditure assessment in childhood obesity

    Full text link
    © 2019 John Wiley & Sons, Ltd. Wearable device technology allows continuous monitoring of biological markers and thereby enables study of time-dependent relationships. For example, in this paper, we are interested in the impact of daily energy expenditure over a period of time on subsequent progression toward obesity among children. Data from these devices appear as either sparsely or densely observed functional data and methods of functional regression are often used for their statistical analyses. We study the scalar-on-function regression model with imprecisely measured values of the predictor function. In this setting, we have a scalar-valued response and a function-valued covariate that are both collected at a single time period. We propose a generalized method of moments-based approach for estimation, while an instrumental variable belonging in the same time space as the imprecisely measured covariate is used for model identification. Additionally, no distributional assumptions regarding the measurement errors are assumed, while complex covariance structures are allowed for the measurement errors in the implementation of our proposed methods. We demonstrate that our proposed estimator is L2 consistent and enjoys the optimal rate of convergence for univariate nonparametric functions. In a simulation study, we illustrate that ignoring measurement error leads to biased estimations of the functional coefficient. The simulation studies also confirm our ability to consistently estimate the function-valued coefficient when compared to approaches that ignore potential measurement errors. Our proposed methods are applied to our motivating example to assess the impact of baseline levels of energy expenditure on body mass index among elementary school–aged children

    Oral administration of interferon tau enhances oxidation of energy substrates and reduces adiposity in Zucker diabetic fatty rats

    Full text link
    Male Zucker diabetic fatty (ZDF) rats were used to study effects of oral administration of interferon tau (IFNT) in reducing obesity. Eighteen ZDF rats (28 days of age) were assigned randomly to receive 0, 4, or 8 μg IFNT/kg body weight (BW) per day (n = 6/group) for 8 weeks. Water consumption was measured every two days. Food intake and BW were recorded weekly. Energy expenditure in 4-, 6-, 8-, and 10-week-old rats was determined using indirect calorimetry. Starting at 7 weeks of age, urinary glucose, and ketone bodies were tested daily. Rates of glucose and oleate oxidation in liver, brown adipose tissue, and abdominal adipose tissue, as well as leucine catabolism in skeletal muscle, and lipolysis in white and brown adipose tissues were greater for rats treated with 8 μg IFNT/kg BW/day in comparison with control rats. Treatment with 8 μg IFNT/kg BW/day increased heat production, reduced BW gain and adiposity, ameliorated fatty liver syndrome, delayed the onset of diabetes, and decreased concentrations of glucose, free fatty acids, triacylglycerol, cholesterol, and branched-chain amino acids in plasma, compared with control rats. Oral administration of 8 μg IFNT/kg BW/day ameliorated oxidative stress in skeletal muscle, liver, and adipose tissue, as indicated by decreased ratios of oxidized glutathione to reduced glutathione and increased concentrations of tetrahydrobiopterin. These results indicate that IFNT stimulates oxidation of energy substrates and reduces obesity in ZDF rats and may have broad important implications for preventing and treating obesity-related diseases in mammals. © 2013 International Union of Biochemistry and Molecular Biology, Inc
    corecore