260 research outputs found
The uncertainty principle and classical amplitudes
We study the variance in the measurement of observables during scattering events, as computed using amplitudes. The classical regime, characterised by negligible uncertainty, emerges as a consequence of an infinite set of relationships among multileg, multiloop amplitudes in a momentum-transfer expansion. We discuss two non-trivial examples in detail: the six-point tree and the five-point one-loop amplitudes in scalar QED. We interpret these relationships in terms of a coherent exponentiation of radiative effects in the classical limit which generalises the eikonal formula, and show how to recover the impulse, including radiation reaction, from this generalised eikonal. Finally, we incorporate the physics of spin into our framework
Carbon nanotube four-terminal devices for pressure sensing applications
Carbon nanotubes (CNTs) are of high interest for sensing applications,owing to their superior mechanical strength, high Young’s modulus and low density. In this work, we report on a facile approach for the fabrication of carbon nanotube devices using a four terminal configuration. Oriented carbon nanotube films were pulled out from a CNT forest wafer and then twisted into a yarn. Both the CNT film and yarn were arranged on elastomer membranes/diaphragms which were arranged on a laser cut acrylic frame to form pressure sensors. The sensors were calibrated using a precisely controlled pressure system, showing a large change of the output voltage of approximately 50 mV at a constant supply current of 100 μA and under a low applied pressure of 15 mbar. The results indicate the high potential of using CNT films and yarns for pressure sensing applications
Femtosecond Dynamics in Single Wall Carbon Nanotube/Poly(3-Hexylthiophene) Composites
Femtosecond transient absorption measurements on single wall carbon nanotube/poly(3-hexylthiophene) composites are used to investigate the relaxation dynamics of this blended material. The influence of the addition of nanotubes in polymer matrix on the ultrashort relaxation dynamics is examined in detail. The introduction of nanotube/polymer heterojunctions enhances the exciton dissociation and quenches the radiative recombination of composites. The relaxation dynamics of these composites are compared with the fullerene derivative-polymer composites with the same matrix. These results provide explanation to the observed photovoltaic performance of two types of composites
Impact of population ageing on the cost of hospitalisations for cardiovascular disease: a population-based data linkage study
Background: Cardiovascular disease (CVD) is the most costly disease in Australia. Measuring the impact of ageing on its costs is needed for planning future healthcare budget. The aim of this study was to measure the impact of changes in population age structure in Western Australia (WA) on the costs of hospitalisation for CVD. Methods: All hospitalisation records for CVD occurring in WA in 1993/94 and 2003/04 inclusive were extracted from the WA Hospital Morbidity Data System (HMDS) via the WA Data Linkage System. Inflation adjusted hospitalisation costs using 2012 as the base year was assigned to all episodes of care using Australian Refined Diagnosis Related Group (AR-DRG) costing information. The component decomposition method was used to measure the contribution of ageing and other factors to the increase of hospitalisation costs for CVD. Results: Between 1993/94 and 2003/04, population ageing contributed 23% and 30% respectively of the increase in CVD hospitalisation costs for men and women. The impact of ageing on hospitalisation costs was far greater for chronic conditions than acute coronary syndrome (ACS) and stroke. Conclusions: Given the impact of ageing on hospitalisation costs, and the disparity between chronic and acute conditions, disease-specific factors should be considered in planning for future healthcare expenditure
MicroRNAs in pulmonary arterial remodeling
Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH
Aboriginal Australian mitochondrial genome variation - An increased understanding of population antiquity and diversity
Aboriginal Australians represent one of the oldest continuous cultures outside Africa, with evidence indicating that their ancestors arrived in the ancient landmass of Sahul (present-day New Guinea and Australia) ∼55 thousand years ago. Genetic studies, though limited, have demonstrated both the uniqueness and antiquity of Aboriginal Australian genomes. We have further resolved known Aboriginal Australian mitochondrial haplogroups and discovered novel indigenous lineages by sequencing the mitogenomes of 127 contemporary Aboriginal Australians. In particular, the more common haplogroups observed in our dataset included M42a, M42c, S, P5 and P12, followed by rarer haplogroups M15, M16, N13, O, P3, P6 and P8. We propose some major phylogenetic rearrangements, such as in haplogroup P where we delinked P4a and P4b and redefined them as P4 (New Guinean) and P11 (Australian), respectively. Haplogroup P2b was identified as a novel clade potentially restricted to Torres Strait Islanders. Nearly all Aboriginal Australian mitochondrial haplogroups detected appear to be ancient, with no evidence of later introgression during the Holocene. Our findings greatly increase knowledge about the geographic distribution and phylogenetic structure of mitochondrial lineages that have survived in contemporary descendants of Australia's first settlers. © The Author(s) 2017
Carbon nanotube four-terminal devices for pressure sensing applications
Carbon nanotubes (CNTs) are of high interest for sensing applications, owing to their superior mechanical strength, high Young’s modulus and low density. In this work, we report on a facile approach for the fabrication of carbon nanotube devices using a four terminal configuration. Oriented carbon nanotube films were pulled out from a CNT forest wafer and then twisted into a yarn. Both the CNT film and yarn were arranged on elastomer membranes/diaphragms which were ar-ranged on a laser cut acrylic frame to form pressure sensors. The sensors were calibrated using a precisely controlled pressure system, showing a large change of the output voltage of approximately 50 mV at a constant supply current of 100µA and under a low applied pressure of 15 mbar. The results indicate the high potential of using CNT films and yarns for pressure sensing applications
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
Moving in an environment of induced sensorimotor incongruence does not influence pain sensitivity in healthy volunteers: A randomised within-subject experiment
Objectives: It has been proposed that in the same way that conflict between vestibular and visual inputs leads to motion sickness, conflict between motor commands and sensory information associated with these commands may contribute to some chronic pain states. Attempts to test this hypothesis by artificially inducing a state of sensorimotor incongruence and assessing self-reported pain have yielded equivocal results. To help clarify the effect sensorimotor incongruence has on pain we investigated the effect of moving in an environment of induced incongruence on pressure pain thresholds (PPT) and the pain experienced immediately on completion of PPT testing.
Methods: Thirty-five healthy subjects performed synchronous and asynchronous upper-limb movements with and without mirror visual feedback in random order. We measured PPT over the elbow and the pain evoked by testing. Generalised linear mixed-models were performed for each outcome. Condition (four levels) and baseline values for each outcome were within-subject factors.
Results: There was no effect of condition on PPT (p = 0.887) or pressure-evoked pain (p = 0.771). A sensitivity analysis using only the first PPT measure after each condition confirmed the result (p = 0.867).
Discussion: Inducing a state of movement related sensorimotor incongruence in the upper-limb of healthy volunteers does not influence PPT, nor the pain evoked by testing. We found no evidence that sensorimotor incongruence upregulates the nociceptive system in healthy volunteer
Inelastic Black Hole Scattering from Charged Scalar Amplitudes
We explain how the lowest-order classical gravitational radiation produced
during the inelastic scattering of two Schwarzschild black holes in General
Relativity can be obtained from a tree scattering amplitude in gauge theory
coupled to scalar fields. The gauge calculation is related to gravity through
the double copy. We remove unwanted scalar forces which can occur in the double
copy by introducing a massless scalar in the gauge theory, which is treated as
a ghost in the link to gravity. We hope these methods are a step towards a
direct application of the double copy at higher orders in classical
perturbation theory, with the potential to greatly streamline gravity
calculations for phenomenological applications.Comment: 28 pages, 6 figure
- …