948 research outputs found
Detectability of colorectal neoplasia with fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT)
The purpose of this study was to analyze the detectability of colorectal neoplasia with fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT).
Data for a total of 492 patients who had undergone both PET/CT and colonoscopy were analyzed. After the findings of PET/CT and colonoscopy were determined independently, the results were compared in each of the six colonic sites examined in all patients. The efficacy of PET/CT was determined using colonoscopic examination as the gold standard.
In all, 270 colorectal lesions 5 mm or more in size, including 70 pathologically confirmed malignant lesions, were found in 172 patients by colonoscopy. The sensitivity and specificity of PET/CT for detecting any of the colorectal lesions were 36 and 98%, respectively. For detecting lesions 11 mm or larger, the sensitivity was increased to 85%, with the specificity remaining consistent (97%). Moreover, the sensitivity for tumors 21 mm or larger was 96% (48/50). Tumors with malignant or high-grade pathology were likely to be positive with PET/CT. A size of 10 mm or smaller [odds ratio (OR) 44.14, 95% confidence interval (95% CI) 11.44-221.67] and flat morphology (OR 7.78, 95% CI 1.79-36.25) were significant factors that were associated with false-negative cases on PET/CT.
The sensitivity of PET/CT for detecting colorectal lesions is acceptable, showing size- and pathology-dependence, suggesting, for the most part, that clinically relevant lesions are detectable with PET/CT. However, when considering PET/CT for screening purposes caution must be exercised because there are cases of false-negative results
Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout
The enormous stiffness and low density of graphene make it an ideal material
for nanoelectromechanical (NEMS) applications. We demonstrate fabrication and
electrical readout of monolayer graphene resonators, and test their response to
changes in mass and temperature. The devices show resonances in the MHz range.
The strong dependence of the resonant frequency on applied gate voltage can be
fit to a membrane model, which yields the mass density and built-in strain.
Upon removal and addition of mass, we observe changes in both the density and
the strain, indicating that adsorbates impart tension to the graphene. Upon
cooling, the frequency increases; the shift rate can be used to measure the
unusual negative thermal expansion coefficient of graphene. The quality factor
increases with decreasing temperature, reaching ~10,000 at 5 K. By establishing
many of the basic attributes of monolayer graphene resonators, these studies
lay the groundwork for applications, including high-sensitivity mass detectors
Polymorphisms in the interleukin-10 gene cluster are possibly involved in the increased risk for major depressive disorder
<p>Abstract</p> <p>Background</p> <p>Innate immune inflammatory response is suggested to have a role in the pathogenesis of major depressive disorder (MDD). Interleukin (IL)-10 family cytokines IL-10, IL-19, IL-20, and IL-24 are all implicated in the inflammatory processes and polymorphisms in respective genes have been associated with various immunopathological conditions. This study was carried out to investigate whether single-nucleotide polymorphisms (SNPs) in these genes are also associated with MDD.</p> <p>Methods</p> <p>Case-control association study was performed with seven SNPs from the <it>IL10 </it>gene cluster. 153 patients with MDD and 277 healthy control individuals were recruited.</p> <p>Results</p> <p>None of the selected SNPs were individually associated with MDD. The linkage disequilibrium (LD) analysis indicated the existence of two recombination sites in the <it>IL10 </it>gene cluster, thus confirming the formerly established LD pattern of this genomic region. This also created two haplotype blocks, both consisting of three SNPs. Additionally, the haplotype analysis detected a significantly higher frequency of block 2 (<it>IL20 </it>and <it>IL24 </it>genes) haplotype TGC in the patients group compared to healthy control individuals (P = 0.0097).</p> <p>Conclusion</p> <p>Our study established increased risk for MDD related to the <it>IL20 </it>and <it>IL24 </it>haplotype and suggests that cytokines may contribute to the pathogenesis of MDD. Since none of the block 2 SNPs were individually associated with MDD, it is possible that other polymorphisms linked to them contribute to the disease susceptibility. Future studies are needed to confirm the results and to find the possible functional explanation.</p
Identifying the Rules of Engagement Enabling Leukocyte Rolling, Activation, and Adhesion
The LFA-1 integrin plays a pivotal role in sustained leukocyte adhesion to the endothelial surface, which is a precondition for leukocyte recruitment into inflammation sites. Strong correlative evidence implicates LFA-1 clustering as being essential for sustained adhesion, and it may also facilitate rebinding events with its ligand ICAM-1. We cannot challenge those hypotheses directly because it is infeasible to measure either process during leukocyte adhesion following rolling. The alternative approach undertaken was to challenge the hypothesized mechanisms by experimenting on validated, working counterparts: simulations in which diffusible, LFA1 objects on the surfaces of quasi-autonomous leukocytes interact with simulated, diffusible, ICAM1 objects on endothelial surfaces during simulated adhesion following rolling. We used object-oriented, agent-based methods to build and execute multi-level, multi-attribute analogues of leukocytes and endothelial surfaces. Validation was achieved across different experimental conditions, in vitro, ex vivo, and in vivo, at both the individual cell and population levels. Because those mechanisms exhibit all of the characteristics of biological mechanisms, they can stand as a concrete, working theory about detailed events occurring at the leukocyte–surface interface during leukocyte rolling and adhesion experiments. We challenged mechanistic hypotheses by conducting experiments in which the consequences of multiple mechanistic events were tracked. We quantified rebinding events between individual components under different conditions, and the role of LFA1 clustering in sustaining leukocyte–surface adhesion and in improving adhesion efficiency. Early during simulations ICAM1 rebinding (to LFA1) but not LFA1 rebinding (to ICAM1) was enhanced by clustering. Later, clustering caused both types of rebinding events to increase. We discovered that clustering was not necessary to achieve adhesion as long as LFA1 and ICAM1 object densities were above a critical level. Importantly, at low densities LFA1 clustering enabled improved efficiency: adhesion exhibited measurable, cell level positive cooperativity
Inhibition of SLPI ameliorates disease activity in experimental autoimmune encephalomyelitis
<p>Abstract</p> <p>Background</p> <p>The secretory leukocyte protease inhibitor (SLPI) exerts wide ranging effects on inflammatory pathways and is upregulated in EAE but the biological role of SLPI in EAE, an animal model of multiple sclerosis is unknown</p> <p>Methods</p> <p>To investigate the pathophysiological effects of SLPI within EAE, we induced SLPI-neutralizing antibodies in mice and rats to determine the clinical severity of the disease. In addition we studied the effects of SLPI on the anti-inflammatory cytokine TGF-β.</p> <p>Results</p> <p>The induction of SLPI neutralizing antibodies resulted in a milder disease course in mouse and rat EAE. SLPI neutralization was associated with increased serum levels of TGF-β and increased numbers of FoxP3+ CD4+ T cells in lymph nodes. <it>In vitro</it>, the addition of SLPI significantly decreased the number of functional FoxP3+ CD25<sup>hi </sup>CD4+ regulatory T cells in cultures of naive human CD4+ T cells. Adding recombinant TGF-β to SLPI-treated human T cell cultures neutralized SLPI's inhibitory effect on regulatory T cell differentiation.</p> <p>Conclusion</p> <p>In EAE, SLPI exerts potent pro-inflammatory actions by modulation of T-cell activity and its neutralization may be beneficial for the disease.</p
Effects of Place of Articulation Changes on Auditory Neural Activity: A Magnetoencephalography Study
In casual speech, phonemic segments often assimilate such that they adopt features from adjacent segments, a typical feature being their place of articulation within the vocal tract (e.g., labial, coronal, velar). Place assimilation (e.g., from coronal /n/ to labial /m/: rainbow→*raimbow) alters the surface form of words. Listeners' ability to perceptually compensate for such changes seems to depend on the phonemic context, on whether the adjacent segment (e.g., the /b/ in “rainbow”) invites the particular change. Also, some assimilations occur frequently (e.g., /n/→/m/), others are rare (e.g., /m/→/n/). We investigated the effects of place assimilation, its contextual dependency, and its frequency on the strength of auditory evoked mismatch negativity (MMN) responses, using pseudowords. Results from magnetoencephalography (MEG) revealed that the MMN was modulated both by the frequency and contextual appropriateness of assimilations
Haplotype frequencies in a sub-region of chromosome 19q13.3, related to risk and prognosis of cancer, differ dramatically between ethnic groups
<p>Abstract</p> <p>Background</p> <p>A small region of about 70 kb on human chromosome 19q13.3 encompasses 4 genes of which 3, <it>ERCC1</it>, <it>ERCC2</it>, and <it>PPP1R13L </it>(aka <it>RAI</it>) are related to DNA repair and cell survival, and one, <it>CD3EAP</it>, aka <it>ASE1</it>, may be related to cell proliferation. The whole region seems related to the cellular response to external damaging agents and markers in it are associated with risk of several cancers.</p> <p>Methods</p> <p>We downloaded the genotypes of all markers typed in the 19q13.3 region in the HapMap populations of European, Asian and African descent and inferred haplotypes. We combined the European HapMap individuals with a Danish breast cancer case-control data set and inferred the association between HapMap haplotypes and disease risk.</p> <p>Results</p> <p>We found that the susceptibility haplotype in our European sample had increased from 2 to 50 percent very recently in the European population, and to almost the same extent in the Asian population. The cause of this increase is unknown. The maximal proportion of overall genetic variation due to differences between groups for Europeans versus Africans and Europeans versus Asians (the F<sub>st </sub>value) closely matched the putative location of the susceptibility variant as judged from haplotype-based association mapping.</p> <p>Conclusion</p> <p>The combined observation that a common haplotype causing an increased risk of cancer in Europeans and a high differentiation between human populations is highly unusual and suggests a causal relationship with a recent increase in Europeans caused either by genetic drift overruling selection against the susceptibility variant or a positive selection for the same haplotype. The data does not allow us to distinguish between these two scenarios. The analysis suggests that the region is not involved in cancer risk in Africans and that the susceptibility variants may be more finely mapped in Asian populations.</p
- …