13 research outputs found

    Variation within and between Frankliniella Thrips Species in Host Plant Utilization

    Get PDF
    Anthophilous flower thrips in the genus Frankliniella (Thysanoptera: Thripidae) exploit ephemeral plant resources and therefore must be capable of successfully locating appropriate hosts on a repeated basis, yet little is known of interspecific and intraspecific variation in responses to host plant type and nutritional quality. Field trials were conducted over two seasons to determine if the abundance of males and females of three common Frankliniella species, F. occidentalis (Pergande), F. tritici (Fitch) and F. bispinosa (Morgan), their larvae, and a key predator, Orius insidiosus (Say) (Hemiptera: Anthocoridae) were affected by host plant type and plant nutritional quality. Two host plants, pepper, Capsicum annuum L. (Solanales: Solanaceae) and tomato, Solanum lycopersicum L. that vary in suitability for these species were examined, and their nutritional quality was manipulated by applying three levels of nitrogen fertilization (101 kg/ha, 202 kg/ha, 404 kg/ha). F. occidentalis females were more abundant in pepper than in tomato, but males did not show a differential response. Both sexes of F. tritici and F. bispinosa were more abundant in tomato than in pepper. Larval thrips were more abundant in pepper than in tomato. Likewise, O. insidiosus females and nymphs were more abundant in pepper than in tomato. Only F. occidentalis females showed a distinct response to nitrogen fertilization, with abundance increasing with fertilization. These results show that host plant utilization patterns vary among Frankliniella spp. and should not be generalized from results of the intensively studied F. occidentalis. Given the different pest status of these species and their differential abundance in pepper and tomato, it is critical that scouting programs include species identifications for proper management

    The Protein Partners of GTP Cyclohydrolase I in Rat Organs

    Get PDF
    GTP cyclohydrolase I (GCH1) is the rate-limiting enzyme for tetrahydrobiopterin biosynthesis and has been shown to be a promising therapeutic target in ischemic heart disease, hypertension, atherosclerosis and diabetes. The endogenous GCH1-interacting partners have not been identified. Here, we determined endogenous GCH1-interacting proteins in rat.A pulldown and proteomics approach were used to identify GCH1 interacting proteins in rat liver, brain, heart and kidney. We demonstrated that GCH1 interacts with at least 17 proteins including GTP cyclohydrolase I feedback regulatory protein (GFRP) in rat liver by affinity purification followed by proteomics and validated six protein partners in liver, brain, heart and kidney by immunoblotting. GCH1 interacts with GFRP and very long-chain specific acyl-CoA dehydrogenase in the liver, tubulin beta-2A chain in the liver and brain, DnaJ homolog subfamily A member 1 and fatty aldehyde dehydrogenase in the liver, heart and kidney and eukaryotic translation initiation factor 3 subunit I (EIF3I) in all organs tested. Furthermore, GCH1 associates with mitochondrial proteins and GCH1 itself locates in mitochondria.GCH1 interacts with proteins in an organ dependant manner and EIF3I might be a general regulator of GCH1. Our finding indicates GCH1 might have broader functions beyond tetrahydrobiopterin biosynthesis

    Maintenance of Melanophore Morphology and Survival Is Cathepsin and vps11 Dependent in Zebrafish

    Get PDF
    Here, we characterize a Danio rerio zebrafish pigment cell mutant (melanophore integrity mutant), which displays a defect in maintenance of melanophore and iridophore number. Mapping and candidate gene analysis links the melanophore integrity mutant mutation to the vacuolar protein sorting 11 (vps11(w66)) gene. Quantification of vps11(w66) chromatophores during larval stages suggests a decrease in number as compared to wildtype siblings. TUNEL analysis and treatment with the caspase inhibitor, zVAD-fmk, indicate that vps11(w66)chromatophore death is caspase independent. Western blot analysis of PARP-1 cleavage patterns in mutant lysates suggests that increases in pH dependent cathepsin activity is involved in the premature chromatophore death observed in vps11(w66) mutants. Consistently, treatment with ALLM and Bafilomycin A1 (cathepsin/calpain and vacuolar-type H+-ATPase inhibitors, respectively), restore normal melanophore morphology and number in vps11(w66) mutants. Last, LC3B western blot analysis indicates an increase in autophagosome marker, LC3B II in vps11(w66) mutants as compared to wildtype control, but not in ALLM or Bafilomycin A1 treated mutants. Taken together, these data suggest that vps11 promotes normal melanophore morphology and survival by inhibiting cathepsin release and/or activity

    Dynamic multi-component covalent assembly for the reversible binding of secondary alcohols and chirality sensing

    No full text
    Reversible covalent bonding is often employed for the creation of novel supramolecular structures, multi-component assemblies, and sensing ensembles. In spite of remarkable success of dynamic covalent systems, the reversible binding of a mono-alcohol with high strength is challenging. Here we show that a strategy of carbonyl activation and hemiaminal ether stabilization can be embodied in a four-component reversible assembly that creates a tetradentate ligand and incorporates secondary alcohols with exceptionally high affinity. Evidence is presented that the intermediate leading to binding and exchange of alcohols is an iminium ion. Further, to demonstrate the use of this assembly process we explored chirality sensing and enantiomeric excess determinations. An induced twist in the ligand by a chiral mono-ol results in large Cotton effects in the circular dichroism spectra indicative of the alcohol’s handedness. The strategy revealed in this study should prove broadly applicable for the incorporation of alcohols into supramolecular architecture construction
    corecore