20 research outputs found
The Importance of Craniofacial Sutures in Biomechanical Finite Element Models of the Domestic Pig
Craniofacial sutures are a ubiquitous feature of the vertebrate skull. Previous experimental work has shown that bone strain magnitudes and orientations often vary when moving from one bone to another, across a craniofacial suture. This has led to the hypothesis that craniofacial sutures act to modify the strain environment of the skull, possibly as a mode of dissipating high stresses generated during feeding or impact. This study tests the hypothesis that the introduction of craniofacial sutures into finite element (FE) models of a modern domestic pig skull would improve model accuracy compared to a model without sutures. This allowed the mechanical effects of sutures to be assessed in isolation from other confounding variables. These models were also validated against strain gauge data collected from the same specimen ex vivo. The experimental strain data showed notable strain differences between adjacent bones, but this effect was generally not observed in either model. It was found that the inclusion of sutures in finite element models affected strain magnitudes, ratios, orientations and contour patterns, yet contrary to expectations, this did not improve the fit of the model to the experimental data, but resulted in a model that was less accurate. It is demonstrated that the presence or absence of sutures alone is not responsible for the inaccuracies in model strain, and is suggested that variations in local bone material properties, which were not accounted for by the FE models, could instead be responsible for the pattern of results
Accuracy of direct genomic values in Holstein bulls and cows using subsets of SNP markers
Background: At the current price, the use of high-density single nucleotide polymorphisms (SNP) genotyping assays in genomic selection of dairy cattle is limited to applications involving elite sires and dams. The objective of this study was to evaluate the use of low-density assays to predict direct genomic value (DGV) on five milk production traits, an overall conformation trait, a survival index, and two profit index traits (APR, ASI). Methods. Dense SNP genotypes were available for 42,576 SNP for 2,114 Holstein bulls and 510 cows. A subset of 1,847 bulls born between 1955 and 2004 was used as a training set to fit models with various sets of pre-selected SNP. A group of 297 bulls born between 2001 and 2004 and all cows born between 1992 and 2004 were used to evaluate the accuracy of DGV prediction. Ridge regression (RR) and partial least squares regression (PLSR) were used to derive prediction equations and to rank SNP based on the absolute value of the regression coefficients. Four alternative strategies were applied to select subset of SNP, namely: subsets of the highest ranked SNP for each individual trait, or a single subset of evenly spaced SNP, where SNP were selected based on their rank for ASI, APR or minor allele frequency within intervals of approximately equal length. Results: RR and PLSR performed very similarly to predict DGV, with PLSR performing better for low-density assays and RR for higher-density SNP sets. When using all SNP, DGV predictions for production traits, which have a higher heritability, were more accurate (0.52-0.64) than for survival (0.19-0.20), which has a low heritability. The gain in accuracy using subsets that included the highest ranked SNP for each trait was marginal (5-6%) over a common set of evenly spaced SNP when at least 3,000 SNP were used. Subsets containing 3,000 SNP provided more than 90% of the accuracy that could be achieved with a high-density assay for cows, and 80% of the high-density assay for young bulls. Conclusions: Accurate genomic evaluation of the broader bull and cow population can be achieved with a single genotyping assays containing ∼ 3,000 to 5,000 evenly spaced SNP
The effect of management system on mortality and other welfare indicators in Pennsylvania dairy herds
AbstractThe objective of this study was to identify farm characteristics that were associated with cow(Bos taurus)welfare outcomes, including mortality rate, culling by 60 days of lactation, survival to ≥ 6 years of age and ≥ 5th parity (aged cows), somatic cell score, milk yield, and milk composition. Data were collected on housing systems, feeding systems, pasture strategies, bedding type, labour management practices and other farm characteristics in face-to-face interviews with 314 Pennsylvania dairy herd owners where performance records were available. Five herd management systems were identified in the sample: free-stalls with complete confinement (n = 37); free-stalls that allowed outdoor access (n = 76); tie-stalls with complete confinement (n = 52); tie-stalls with outdoor access and that fed a total mixed ration (n = 72); and tie-stalls with outdoor access and that did not feed a total mixed ration (n = 77). Welfare outcomes were evaluated with multivariable linear regression models and marginal means were estimated for herd management system. Tie-stalls that allowed outdoor access and that did not feed total mixed rations had the lowest mortality rate (2.0%), culling in the first 60 days of lactation (5.1%), and the highest proportion of aged cows (13.8%). Those herds also had high lifetime-to-date milk yield, a low proportion of fat-protein inversions, and low somatic cell scores. Free-stalls with complete confinement had significantly higher levels of mortality (8.3%), culling in the first 60 days of lactation (9.7%), and fewer aged cows (6.4%). It was concluded that shifts toward more efficient herd management systems have not benefited cow health and welfare. This suggests that cow welfare has been compromised to facilitate the economic survival of dairy farms.</jats:p
Recommended from our members
Modeling the elastic properties of sutures in finite element analysis
217-21
