673 research outputs found
Measuring co-authorship and networking-adjusted scientific impact
Appraisal of the scientific impact of researchers, teams and institutions
with productivity and citation metrics has major repercussions. Funding and
promotion of individuals and survival of teams and institutions depend on
publications and citations. In this competitive environment, the number of
authors per paper is increasing and apparently some co-authors don't satisfy
authorship criteria. Listing of individual contributions is still sporadic and
also open to manipulation. Metrics are needed to measure the networking
intensity for a single scientist or group of scientists accounting for patterns
of co-authorship. Here, I define I1 for a single scientist as the number of
authors who appear in at least I1 papers of the specific scientist. For a group
of scientists or institution, In is defined as the number of authors who appear
in at least In papers that bear the affiliation of the group or institution. I1
depends on the number of papers authored Np. The power exponent R of the
relationship between I1 and Np categorizes scientists as solitary (R>2.5),
nuclear (R=2.25-2.5), networked (R=2-2.25), extensively networked (R=1.75-2) or
collaborators (R<1.75). R may be used to adjust for co-authorship networking
the citation impact of a scientist. In similarly provides a simple measure of
the effective networking size to adjust the citation impact of groups or
institutions. Empirical data are provided for single scientists and
institutions for the proposed metrics. Cautious adoption of adjustments for
co-authorship and networking in scientific appraisals may offer incentives for
more accountable co-authorship behaviour in published articles.Comment: 25 pages, 5 figure
Optimality of mutation and selection in germinal centers
The population dynamics theory of B cells in a typical germinal center could
play an important role in revealing how affinity maturation is achieved.
However, the existing models encountered some conflicts with experiments. To
resolve these conflicts, we present a coarse-grained model to calculate the B
cell population development in affinity maturation, which allows a
comprehensive analysis of its parameter space to look for optimal values of
mutation rate, selection strength, and initial antibody-antigen binding level
that maximize the affinity improvement. With these optimized parameters, the
model is compatible with the experimental observations such as the ~100-fold
affinity improvements, the number of mutations, the hypermutation rate, and the
"all or none" phenomenon. Moreover, we study the reasons behind the optimal
parameters. The optimal mutation rate, in agreement with the hypermutation rate
in vivo, results from a tradeoff between accumulating enough beneficial
mutations and avoiding too many deleterious or lethal mutations. The optimal
selection strength evolves as a balance between the need for affinity
improvement and the requirement to pass the population bottleneck. These
findings point to the conclusion that germinal centers have been optimized by
evolution to generate strong affinity antibodies effectively and rapidly. In
addition, we study the enhancement of affinity improvement due to B cell
migration between germinal centers. These results could enhance our
understandings to the functions of germinal centers.Comment: 5 figures in main text, and 4 figures in Supplementary Informatio
Multiple magnon modes and consequences for the Bose-Einstein condensed phase in BaCuSi2O6
The compound BaCuSi2O6 is a quantum magnet with antiferromagnetic dimers of S=1/2 moments on a quasi-2D square lattice. We have investigated its spin dynamics by inelastic neutron scattering experiments on single crystals with an energy resolution considerably higher than in an earlier study. We observe multiple magnon modes, indicating clearly the presence of magnetically inequivalent dimer sites. The more complex spin Hamiltonian revealed in our study leads to a distinct form of magnon Bose-Einstein condensate phase with a spatially modulated condensate amplitude
Analysing the Impact of Machine Learning to Model Subjective Mental Workload: A Case Study in Third-Level Education
Mental workload measurement is a complex multidisciplinary research area that includes both the theoretical and practical development of models. These models are aimed at aggregating those factors, believed to shape mental workload, and their interaction, for the purpose of human performance prediction. In the literature, models are mainly theory-driven: their distinct development has been influenced by the beliefs and intuitions of individual scholars in the disciplines of Psychology and Human Factors. This work presents a novel research that aims at reversing this tendency. Specifically, it employs a selection of learning techniques, borrowed from machine learning, to induce models of mental workload from data, with no theoretical assumption or hypothesis. These models are subsequently compared against two well-known subjective measures of mental workload, namely the NASA Task Load Index and the Workload Profile. Findings show how these data-driven models are convergently valid and can explain overall perception of mental workload with a lower error
Study of avidity of antigen-specific antibody as a means of understanding development of long-term immunological memory after Vibrio cholerae O1 infection
The avidity of antibodies to specific antigens and the relationship of avidity to memory B cell responses to these antigens have not been studied in patients with cholera or those receiving oral cholera vaccines. We measured the avidity of antibodies to cholera toxin B subunit (CTB) and Vibrio cholerae O1 lipopolysaccharide (LPS) in Bangladeshi adult cholera patients (n = 30), as well as vaccinees (n = 30) after administration of two doses of a killed oral cholera vaccine. We assessed antibody and memory B cell responses at the acute stage in patients or prior to vaccination in vaccinees and then in follow-up over a year. Both patients and vaccinees mounted CTB-specific IgG and IgA antibodies of high avidity. Patients showed longer persistence of these antibodies than vaccinees, with persistence lasting in patients up to day 270 to 360. The avidity of LPS-specific IgG and IgA antibodies in patients remained elevated up to 180 days of follow-up. Vaccinees mounted highly avid LPS-specific antibodies at day 17 (3 days after the second dose of vaccine), but the avidity waned rapidly to baseline by 30 days. We examined the correlation between antigen-specific memory B cell responses and avidity indices for both antigens. We found that numbers of CTB- and LPS-specific memory B cells significantly correlated with the avidity indices of the corresponding antibodies (P < 0.05; Spearman's ρ = 0.28 to 0.45). These findings suggest that antibody avidity after infection and immunization is a good correlate of the development and maintenance of memory B cell responses to Vibrio cholerae O1 antigens
Dimensional reduction at a quantum critical point
Competition between electronic ground states near a quantum critical point
(QCP) - the location of a zero-temperature phase transition driven solely by
quantum-mechanical fluctuations - is expected to lead to unconventional
behaviour in low-dimensional systems. New electronic phases of matter have been
predicted to occur in the vicinity of a QCP by two-dimensional theories, and
explanations based on these ideas have been proposed for significant unsolved
problems in condensed-matter physics, such as non-Fermi-liquid behaviour and
high-temperature superconductivity. But the real materials to which these ideas
have been applied are usually rendered three-dimensional by a finite electronic
coupling between their component layers; a two-dimensional QCP has not been
experimentally observed in any bulk three-dimensional system, and mechanisms
for dimensional reduction have remained the subject of theoretical conjecture.
Here we show evidence that the Bose-Einstein condensate of spin triplets in the
three-dimensional Mott insulator BaCuSi2O6 provides an experimentally
verifiable example of dimensional reduction at a QCP. The interplay of
correlations on a geometrically frustrated lattice causes the individual
two-dimensional layers of spin-1/2 Cu2+ pairs (spin dimers) to become decoupled
at the QCP, giving rise to a two-dimensional QCP characterized by power law
scaling distinctly different from that of its three-dimensional counterpart.
Thus the very notion of dimensionality can be said to acquire an 'emergent'
nature: although the individual particles move on a three-dimensional lattice,
their collective behaviour occurs in lower-dimensional space.Comment: 14 pages, 4 figure
3D FEM to predict residual stresses of press-braked thin-walled steel sections
Cold-formed steel sections are normally produced by cold work manufacturing processes. The amount of cold work to form the sections may have induced residual stresses in the section especially in the area of bending. Hence, these cold work processes may have significant effects on the section behaviour and load-bearing capacity. There was a lack of studies in investigating the effects of residual stresses raised by press-braking operations unlike the roll-forming operation. Therefore, a 3D finite element simulation was employed to simulate this forming process. This study investigated the magnitude of the maximum residual stresses along the length of the corner region and through-thickness residual stress variations induced by the press-braking forming process. The study concluded that residual stresses are not linear longitudinally (along the corner region). Maximum residual stresses exist near the middle surface of the plate. The comparison of the 3D-FE results with the 2D-FE results illustrate that 3D-FE has a variation in transverse and longitudinal residual stresses along the plate length. In addition, 2D-FE results overestimate the residual stresses along the corner region
- …