691 research outputs found

    The proximal cis-acting elements Sp1, Sp3 and E2F regulate mouse mer gene transcription in sertoli cells

    Get PDF
    Mer belongs to the Tyro 3 family of receptor tyrosine kinases (RTKs). Together with Axl and Rse, the three RTKs are believed to play important functional roles in the male gonads because gene knockout male mice lacking all of these receptors are infertile. In the present study, postnatal expression of Axl and Rse in mouse testes decreased during maturation while expression of Mer increased age-dependently during testicular development. To investigate the transcriptional regulation of gene expression in the testis, a ≈ 1.5 kb fragment of the 5′ flanking sequence of Mer was isolated. The sequence lacks a typical TATA or CAAT box. 5′ RACE revealed that the putative major transcriptional start site of Mer is located at +102 bp upstream of the translation initiation site. Using transient transfections of luciferase reporter constructs driven by various lengths of the 5′ flanking sequence, the gene segment -321/+126 showed the highest transcriptional activity in a mouse Sertoli cell line (TM4). DNAase I footprinting experiments revealed four footprints within the region from -321 to -26, including three binding sites for the transcriptional factor Specificity protein 1 (Sp1) and one for an unknown transcriptional factor. Electrophoretic mobility shift assay (EMSA), supershift assay, mutation studies and cotransfection demonstrated that those Sp1 cis-acting motifs interacted either with Sp1 or Sp1/Sp3, depending on location and the nearby nucleotide sequences. An E2F binding site which down-regulates Mer transcription, as revealed by EMSA, deletion and mutation studies, was identified downstream in the proximity of the promoter. Taking all of these data together, the study has demonstrated that Sp1, Sp3, E2F and probably another unknown transcriptional factor play a critical role in regulating the proximal promoter activities of Mer.postprin

    Abstract Model Counting: A Novel Approach for Quantification of Information Leaks

    Get PDF
    acmid: 2590328 keywords: model checking, quantitative information flow, satisfiability modulo theories, symbolic execution location: Kyoto, Japan numpages: 10acmid: 2590328 keywords: model checking, quantitative information flow, satisfiability modulo theories, symbolic execution location: Kyoto, Japan numpages: 10acmid: 2590328 keywords: model checking, quantitative information flow, satisfiability modulo theories, symbolic execution location: Kyoto, Japan numpages: 10We present a novel method for Quantitative Information Flow analysis. We show how the problem of computing information leakage can be viewed as an extension of the Satisfiability Modulo Theories (SMT) problem. This view enables us to develop a framework for QIF analysis based on the framework DPLL(T) used in SMT solvers. We then show that the methodology of Symbolic Execution (SE) also fits our framework. Based on these ideas, we build two QIF analysis tools: the first one employs CBMC, a bounded model checker for ANSI C, and the second one is built on top of Symbolic PathFinder, a Symbolic Executor for Java. We use these tools to quantify leaks in industrial code such as C programs from the Linux kernel, a Java tax program from the European project HATS, and anonymity protocol

    Understanding and promoting oral health of Indonesian domestic helpers in Hong Kong

    Get PDF
    Includes bibliographical references (p. 44).published_or_final_versio

    Non-polar InGaN quantum dot emission with crystal-axis oriented linear polarization

    Get PDF
    Polarization sensitive photoluminescence is performed on single non-polar InGaN quantum dots. The studied InGaN quantum dots are found to have linearly polarized emission with a common polarization direction defined by the [0001] crystal axis. Around half of ∼40 studied dots have a polarization degree of 1. For those lines with a polarization degree less than 1, we can resolve fine structure splittings between −800 μeV and +800 μeV, with no clear correlation between fine structure splitting and emission energy.This research was supported by the Engineering and Physical Sciences Research Council (EPSRC) UK (Grant No. EP/H047816/1).This is the accepted manuscript of a paper published in Applied Physics Letters (Reid BPL, Kocher C, Zhu T, Oehler F, Chan CCS, Oliver RA, Taylor RA, Applied Physics Letters, 2015, 106, 171108, doi:10.1063/1.4919656). The final version is available at http://dx.doi.org/10.1063/1.491965

    Integral Multiphase Turbulence Compressible Jet Expansion Model for Accidental Releases from Pressurized Containments

    Get PDF
    The accurate prediction of the conditions of a pressurized jet upon its expansion to atmospheric pressure is of fundamental importance in assessing the consequences associated with accidental releases of hazardous fluids from pressurized containments. An integral multiphase compressible jet expansion model which for the first time accounts for turbulence generation is presented. Real fluid behavior is accounted for applying a suitable equation of state. By use of the accidental release of two-phase CO2 from a pressurized system as an example, the proposed model is shown to provide far better predictions of the fully expanded jet momentum and hence its downstream flow characteristics as compared to existing integral models where the impact of turbulence generation is ignored

    Wild type and mutant 2009 pandemic influenza A (H1N1) viruses cause more severe disease and higher mortality in pregnant BALB/c mice

    Get PDF
    Background: Pregnant women infected by the pandemic influenza A (H1N1) 2009 virus had more severe disease and higher mortality but its pathogenesis is still unclear. Principal Findings: We showed that higher mortality, more severe pneumonitis, higher pulmonary viral load, lower peripheral blood T lymphocytes and antibody responses, higher levels of proinflammatory cytokines and chemokines, and worse fetal development occurred in pregnant mice than non-pregnant controls infected by either wild type (clinical isolate) or mouse-adapted mutant virus with D222G substitution in hemagglutinin. These disease-associated changes and the lower respiratory tract involvement were worse in pregnant mice challenged by mutant virus. Though human placental origin JEG-3 cell line could be infected and proinflammatory cytokines or chemokines were elevated in amniotic fluid of some mice, no placental or fetal involvement by virus were detected by culture, real-time reverse transcription polymerase chain reaction or histopathological changes. Dual immunofluorescent staining of viral nucleoprotein and type II alveolar cell marker SP-C protein suggested that the majority of infected alveolar epithelial cells were type II pneumocytes. Conclusion: The adverse effect of this pandemic virus on maternal and fetal outcome is largely related to the severe pulmonary disease and the indirect effect of inflammatory cytokine spillover into the systemic circulation. © 2010 Chan et al.published_or_final_versio

    Assessing the potential of utilisation and storage strategies for post-combustion CO2 emissions reduction

    Get PDF
    The emissions reduction potential of three carbon dioxide handling strategies for post-combustion capture is considered. These are carbon capture and sequestration/storage (CCS), enhanced hydrocarbon recovery (EHR), and carbon dioxide utilization (CDU) to produce synthetic oil. This is performed using common and comparable boundary conditions including net CO2 sequestered based on equivalent boundary conditions. This is achieved using a “cradle to grave approach” where the final destination and fate of any product is considered. The input boundary is pure CO2 that has been produced using a post-combustion capture process as this is common between all processes. The output boundary is the emissions resulting from any product produced with the assumption that the majority of the oil will go to combustion processes. We also consider the “cradle to gate” approach where the ultimate fate of the oil is not considered as this is a boundary condition often applied to EHR processes. Results show that while CCS can make an impact on CO2 emissions, CDU will have a comparable effect whilst generating income while EHR will ultimately increase net emissions. The global capacity for CDU is also compared against CCS using data based on current and planned CCS projects. Analysis shows that current CDU represent a greater volume of capture than CCS processes and that this gap is likely to remain well beyond 2020 which is the limit of the CCS projects in the database

    Kinetic and economic analysis of reactive capture of dilute carbon dioxide with Grignard reagents

    Get PDF
    Carbon Dioxide Utilisation (CDU) processes face significant challenges, especially in the energetic cost of carbon capture from flue gas and the uphill energy gradient for CO2 reduction. Both of these stumbling blocks can be addressed by using alkaline earth metal compounds, such as Grignard reagents, as sacrificial capture agents. We have investigated the performance of these reagents in their ability to both capture and activate CO2 directly from dried flue gas (essentially avoiding the costly capture process entirely) at room temperature and ambient pressures with high yield and selectivity. Naturally, to make the process sustainable, these reagents must then be recycled and regenerated. This would potentially be carried out using existing industrial processes and renewable electricity. This offers the possibility of creating a closed loop system whereby alcohols and certain hydrocarbons may be carboxylated with CO2 and renewable electricity to create higher-value products containing captured carbon. A preliminary Techno-Economic Analysis (TEA) of an example looped process has been carried out to identify the electrical and raw material supply demands and hence determine production costs. These have compared broadly favourably with existing market values

    Impact of Educational Models on Student Confidence in Acute Care Physical Therapy: A Comparative Analysis

    Get PDF
    Background and Purpose Hybrid and blended education have evolved as innovative models to deliver physical therapy (PT) education.1 PT faculty rapidly integrated these models into their pedagogy during the COVID pandemic in 2020 and many have retained these methods.1 Assessment of these models most frequently use cognitive indicators of learning outcomes (e.g. National Physical Therapy Examination).2 Noncognitive indicators (e.g. confidence and self-efficacy), should be considered when assessing new educational models in PT given their relationship with competency and career direction.3-5 The impact of “distance models” on noncognitive learning indicators is of particular value to acute care where face-to-face interactions may be paramount to cultivating interest, confidence, and self-efficacy. This study compared changes in acute care self-efficacy (ACSE) in response to differing educational models in entry-level PT students.https://jdc.jefferson.edu/ptposters/1000/thumbnail.jp
    corecore