3 research outputs found

    Blood pressure variability and closed-loop baroreflex assessment in adolescent chronic fatigue syndrome during supine rest and orthostatic stress

    Get PDF
    Hemodynamic abnormalities have been documented in the chronic fatigue syndrome (CFS), indicating functional disturbances of the autonomic nervous system responsible for cardiovascular regulation. The aim of this study was to explore blood pressure variability and closed-loop baroreflex function at rest and during mild orthostatic stress in adolescents with CFS. We included a consecutive sample of 14 adolescents 12–18 years old with CFS diagnosed according to a thorough and standardized set of investigations and 56 healthy control subjects of equal sex and age distribution. Heart rate and blood pressure were recorded continuously and non-invasively during supine rest and during lower body negative pressure (LBNP) of –20 mmHg to simulate mild orthostatic stress. Indices of blood pressure variability and baroreflex function (α-gain) were computed from monovariate and bivariate spectra in the low-frequency (LF) band (0.04–0.15 Hz) and the high–frequency (HF) band (0.15–0.50 Hz), using an autoregressive algorithm. Variability of systolic blood pressure in the HF range was lower among CFS patients as compared to controls both at rest and during LBNP. During LBNP, compared to controls, α-gain HF decreased more, and α-gain LF and the ratio of α-gain LF/α-gain HF increased more in CFS patients, all suggesting greater shift from parasympathetic to sympathetic baroreflex control. CFS in adolescents is characterized by reduced systolic blood pressure variability and a sympathetic predominance of baroreflex heart rate control during orthostatic stress. These findings may have implications for the pathophysiology of CFS in adolescents

    Feasibility of noninvasive continuous finger arterial blood pressure measurements in very young children, aged 0-4 years

    No full text
    Our goal was to study the feasibility of continuous noninvasive finger blood pressure (BP) monitoring in very young children, aged 0-4 y. To achieve this, we dedigned a set of smallsized finger cuffs based on the assessment of finger circumference. Finger arterial BP measured by a volume clamp device (Finapress technology) was compared with simultaneously measured intra-arterial BP in 15 very young children (median age, 5 mo; range, 0-48), admitted to the intensive care unit for vital monitoring. The finger cuff-derived BP waveforms showed good resemblance with the invasive arterial waveforms (mean root-mean-square error, 3 mm Hg). The correlation coefficient between both methods was 0.79 ± 0.19 systolic and 0.74 ± 0.24 diastolic. The correlation coefficient of beat-to-beat changes between both methods was 0.82 ± 0.18 and 0.75 ± 0.21, respectively. Three measurements were related to measurement errors (loose cuff application; wrong set-point). Excluding these erroneous measurements resulted in clinically acceptable measurement bias (-3.8 mm Hg) and 95% limits of agreement (-10.4 to + 2.8 mm Hg) of mean BP values. We conclude that continuous finger BP measurement is feasable in very young children. However, cuff application is critical, and the current set-point algorithm needs to be revised in very young children. (Pediatr Res 63: 691-696, 2008
    corecore