14 research outputs found
Drosophila Histone Deacetylase-3 Controls Imaginal Disc Size through Suppression of Apoptosis
Histone deacetylases (HDACs) execute biological regulation through post-translational modification of chromatin and other cellular substrates. In humans, there are eleven HDACs, organized into three distinct subfamilies. This large number of HDACs raises questions about functional overlap and division of labor among paralogs. In vivo roles are simpler to address in Drosophila, where there are only five HDAC family members and only two are implicated in transcriptional control. Of these two, HDAC1 has been characterized genetically, but its most closely related paralog, HDAC3, has not. Here we describe the isolation and phenotypic characterization of hdac3 mutations. We find that both hdac3 and hdac1 mutations are dominant suppressors of position effect variegation, suggesting functional overlap in heterochromatin regulation. However, all five hdac3 loss-of-function alleles are recessive lethal during larval/pupal stages, indicating that HDAC3 is essential on its own for Drosophila development. The mutant larvae display small imaginal discs, which result from abnormally elevated levels of apoptosis. This cell death occurs as a cell-autonomous response to HDAC3 loss and is accompanied by increased expression of the pro-apoptotic gene, hid. In contrast, although HDAC1 mutants also display small imaginal discs, this appears to result from reduced proliferation rather than from elevated apoptosis. The connection between HDAC loss and apoptosis is important since HDAC inhibitors show anticancer activities in animal models through mechanisms involving apoptotic induction. However, the specific HDACs implicated in tumor cell killing have not been identified. Our results indicate that protein deacetylation by HDAC3 plays a key role in suppression of apoptosis in Drosophila imaginal tissue
A Cis-Regulatory Map of the Drosophila Genome
Systematic annotation of gene regulatory elements is a major challenge in genome science. Direct mapping of chromatin modification marks and transcriptional factor binding sites genome-wide1, 2 has successfully identified specific subtypes of regulatory elements3. In Drosophila several pioneering studies have provided genome-wide identification of Polycomb response elements4, chromatin states5, transcription factor binding sites6, 7, 8, 9, RNA polymerase II regulation8 and insulator elements10; however, comprehensive annotation of the regulatory genome remains a significant challenge. Here we describe results from the modENCODE cis-regulatory annotation project. We produced a map of the Drosophila melanogaster regulatory genome on the basis of more than 300 chromatin immunoprecipitation data sets for eight chromatin features, five histone deacetylases and thirty-eight site-specific transcription factors at different stages of development. Using these data we inferred more than 20,000 candidate regulatory elements and validated a subset of predictions for promoters, enhancers and insulators in vivo. We identified also nearly 2,000 genomic regions of dense transcription factor binding associated with chromatin activity and accessibility. We discovered hundreds of new transcription factor co-binding relationships and defined a transcription factor network with over 800 potential regulatory relationships
Beyond molting—roles of the steroid molting hormone in regulation of memory and sleep in adult Drosophila
The molting hormone 20-hydroxyecdysone (20E) is an active metabolite of ecdysone and plays vital roles during ontogeny of the fruit fly Drosophila, coordinating critical developmental transitions such as molting and metamorphosis. Although 20E is known to exist throughout life in both male and female flies, its functions in adult physiology and behavior remain largely elusive. Notably, findings from previous studies suggest that this hormone may be involved in adult stress responses. Consistent with this possibility, we have found that ecdysone signaling in adult flies is activated by “stressful” social interactions and plays a role in the formation of long-term courtship memory.1 In addition, we recently reported that ecdysone signaling contributes to the regulation of sleep, affecting transitions between sleep and wakefulness.2 Here we first summarize our findings on the unconventional roles of 20E in regulating memory and sleep in adult flies. We then discuss speculative ideas concerning the stress hormone-like features of 20E, as well as the possibility that ecdysone signaling contributes to remodeling of the adult nervous system, at both the functional and structural levels, through epigenetic mechanisms