60 research outputs found

    Effect of Cry1Ab Protein on Rhizobacterial Communities of Bt-Maize over a Four-Year Cultivation Period

    Get PDF
    Background: Bt-maize is a transgenic variety of maize expressing the Cry toxin from Bacillus turingiensis. The potential accumulation of the relative effect of the transgenic modification and the cry toxin on the rhizobacterial communities of Btmaize has been monitored over a period of four years. Methodology/Principal Findings: The accumulative effects of the cultivation of this transgenic plant have been monitored by means of high throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region from rhizobacterial communities. The obtained sequences were subjected to taxonomic, phylogenetic and taxonomicindependent diversity studies. The results obtained were consistent, indicating that variations detected in the rhizobacterial community structure were possibly due to climatic factors rather than to the presence of the Bt-gene. No variations were observed in the diversity estimates between non-Bt and Bt-maize. Conclusions/Significance: The cultivation of Bt-maize during the four-year period did not change the maize rhizobacterial communities when compared to those of the non-Bt maize. This is the first study to be conducted with Bt-maize during such a long cultivation period and the first evaluation of rhizobacterial communities to be performed in this transgenic plant using Next Generation Sequencing

    Mutational analysis of the C-terminal FATC domain of Saccharomyces cerevisiae Tra1

    Get PDF
    Tra1 is a component of the Saccharomyces cerevisiae SAGA and NuA4 complexes and a member of the PIKK family, which contain a C-terminal phosphatidylinositol 3-kinase-like (PI3K) domain followed by a 35-residue FATC domain. Single residue changes of L3733A and F3744A, within the FATC domain, resulted in transcriptional changes and phenotypes that were similar but not identical to those caused by mutations in the PI3K domain or deletions of other SAGA or NuA4 components. The distinct nature of the FATC mutations was also apparent from the additive effect of tra1-L3733A with SAGA, NuA4, and tra1 PI3K domain mutations. Tra1-L3733A associates with SAGA and NuA4 components and with the Gal4 activation domain, to the same extent as wild-type Tra1; however, steady-state levels of Tra1-L3733A were reduced. We suggest that decreased stability of Tra1-L3733A accounts for the phenotypes since intragenic suppressors of tra1-L3733A restored Tra1 levels, and reducing wild-type Tra1 led to comparable growth defects. Also supporting a key role for the FATC domain in the structure/function of Tra1, addition of a C-terminal glycine residue resulted in decreased association with Spt7 and Esa1, and loss of cellular viability. These findings demonstrate the regulatory potential of mechanisms targeting the FATC domains of PIKK proteins

    Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains

    Full text link

    Finitely generated free modular ortholattices. I

    No full text
    A description is given of the n-generated free algebras in the variety of modular ortholattices generated by an ortholattice MO2 of height 2 with 4 atoms. In the subvariety lattice of orthomodular lattices, the variety V(MO2) is the unique cover of the variety of Boolean algebras, in which n-generated free algebras were described by G. Boole in 1854. It is shown that the n-generated free algebra in the variety V(MO2) is a product of the n -generated free Boolean algebra 22″ and Φ(n) copies of the generator MO2, and formula is presented for Φ(n). To achieve this result, algebraic methods of the theory of orthomodular lattices are combined with recently developed methods of natural duality theory for varieties of algebras

    Egg protein derived ultralightweight hybrid monolithic aerogel for water purification

    No full text
    The integration of 2D-graphitic carbon (G) with 1D-carbon nanofiber (CF) allows for the unique properties of 2D graphitic carbon to be combined with the low densities, mechanical performance, and high surface area required for applications across the energy and sustainability landscape. Through a combination of experiments and numerical modeling, we demonstrate the transformation of standard egg-white (EW) proteins into an ultralightweight G-CF aerogel with a multiscale structure. The resulting covalently-bonded hierarchical structure, derived from the complex underlying protein configuration, exhibits a density that is two orders of magnitude lower than existing state-of-the-art materials. We apply this material to the challenges of desalination and water purification, notably demonstrating that the G-CF aerogel significantly improves upon existing materials, capturing 98.2% of ionic impurities and 99.9% of nano/microplastic contamination from seawater

    Simplified seismic resistant design of base isolated single pylon cable-stayed bridge

    No full text
    © 2018 Springer Science+Business Media B.V., part of Springer Nature The seismic vulnerability of single pylon cable-stayed bridges under strong ground motions in the transverse direction is of great concern to earthquake engineering researchers and bridge engineers. Introduction of base isolation to cable-stayed bridges has been proved very effective in reducing seismic forces in the bridges in previous studies. This paper proposes a direct displacement based seismic design (DDBD) procedure for base isolated cable-stayed bridge under transverse seismic excitation. One of the key aspects of the DDBD is the realization of a uniform transverse target displacement of the deck under seismic excitation, which is achieved by appropriate design of the isolator stiffness at the bottom of the pylon and the ends of the deck. The proposed DDBD procedure is applied in this paper to the seismic design of a single pylon cable-stayed bridge isolated by friction pendulum bearings. The effectiveness and the accuracy of the resulting design are checked by nonlinear time history analyses. The numerical results indicate that the proposed DDBD procedure can predict the deck displacement profile and amplitudes, as well as the base shear within a reasonable degree of accuracy. The case study demonstrates that the proposed DDBD procedure is sufficiently accurate and practical for the seismic design of base isolated single pylon cable-stayed bridges
    corecore