694 research outputs found

    A structured framework for improving outbreak investigation audits

    Get PDF
    Outbreak investigation is a core function of public health agencies. Suboptimal outbreak investigation endangers both public health and agency reputations. While audits of clinical medical and nursing practice are conducted as part of continuous quality improvement, public health agencies rarely make systematic use of structured audits to ensure best practice for outbreak responses, and there is limited guidance or policy to guide outbreak audit. A framework for prioritising which outbreak investigations to audit, an approach for conducting a successful audit, and a template for audit trigger questions was developed and trialled in four foodborne outbreaks and a respiratory disease outbreak in Australia. The following issues were identified across several structured audits: the need for clear definitions of roles and responsibilities both within and between agencies, improved communication between agencies and with external stakeholders involved in outbreaks, and the need for development of performance standards in outbreak investigations - particularly in relation to timeliness of response. Participants considered the audit process and methodology to be clear, useful, and non-threatening. Most audits can be conducted within two to three hours, however, some participants felt this limited the scope of the audit. The framework was acceptable to participants, provided an opportunity for clarifying perceptions and enhancing partnership approaches, and provided useful recommendations for approaching future outbreaks. Future challenges include incorporating feedback from broader stakeholder groups, for example those of affected cases, institutions and businesses; assessing the quality of a specific audit; developing training for both participants and facilitators; and building a central capacity to support jurisdictions embarking on an audit. The incorporation of measurable performance criteria or sharing of benchmark performance criteria will assist in the standardisation of outbreak investigation audit and further quality improvement

    Plasma neurofilament light chain protein is not increased in treatment-resistant schizophrenia and first-degree relatives

    Get PDF
    Objective: Schizophrenia, a complex psychiatric disorder, is often associated with cognitive, neurological and neuroimaging abnormalities. The processes underlying these abnormalities, and whether a subset of people with schizophrenia have a neuroprogressive or neurodegenerative component to schizophrenia, remain largely unknown. Examining fluid biomarkers of diverse types of neuronal damage could increase our understanding of these processes, as well as potentially provide clinically useful biomarkers, for example with assisting with differentiation from progressive neurodegenerative disorders such as Alzheimer and frontotemporal dementias. Methods: This study measured plasma neurofilament light chain protein (NfL) using ultrasensitive Simoa technology, to investigate the degree of neuronal injury in a well-characterised cohort of people with treatment-resistant schizophrenia on clozapine (n = 82), compared to first-degree relatives (an at-risk group, n = 37), people with schizophrenia not treated with clozapine (n = 13), and age- and sex-matched controls (n = 59). Results: We found no differences in NfL levels between treatment-resistant schizophrenia (mean NfL, M = 6.3 pg/mL, 95% confidence interval: [5.5, 7.2]), first-degree relatives (siblings, M = 6.7 pg/mL, 95% confidence interval: [5.2, 8.2]; parents, M after adjusting for age = 6.7 pg/mL, 95% confidence interval: [4.7, 8.8]), controls (M = 5.8 pg/mL, 95% confidence interval: [5.3, 6.3]) and not treated with clozapine (M = 4.9 pg/mL, 95% confidence interval: [4.0, 5.8]). Exploratory, hypothesis-generating analyses found weak correlations in treatment-resistant schizophrenia, between NfL and clozapine levels (Spearman’s r = 0.258, 95% confidence interval: [0.034, 0.457]), dyslipidaemia (r = 0.280, 95% confidence interval: [0.064, 0.470]) and a negative correlation with weight (r = −0.305, 95% confidence interval: [−0.504, −0.076]). Conclusion: Treatment-resistant schizophrenia does not appear to be associated with neuronal, particularly axonal degeneration. Further studies are warranted to investigate the utility of NfL to differentiate treatment-resistant schizophrenia from neurodegenerative disorders such as behavioural variant frontotemporal dementia, and to explore NfL in other stages of schizophrenia such as the prodome and first episode

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Variation in Cooperative Behaviour within a Single City

    Get PDF
    Human cooperative behaviour, as assayed by decisions in experimental economic dilemmas such as the Dictator Game, is variable across human populations. Within-population variation has been less well studied, especially within industrial societies. Moreover, little is known about the extent to which community-level variation in Dictator Game behaviour relates to community-level variation in real-world social behaviour. We chose two neighbourhoods of the city of Newcastle upon Tyne that were similar in most regards, but at opposite ends of the spectrum in terms of level of socioeconomic deprivation. We administered Dictator Games to randomly-selected residents, and also gathered a large number of more naturalistic measures of cooperativeness. There were dramatic differences in Dictator Game behaviour between the two neighbourhoods, with the mean allocation to the other player close to half the stake in the affluent neighbourhood, and close to one tenth of the stake in the deprived neighbourhood. Moreover, the deprived neighbourhood was also characterised by lower self-reported social capital, higher frequencies of crime and antisocial behaviour, a higher frequency of littering, and less willingness to take part in a survey or return a lost letter. On the other hand, there were no differences between the neighbourhoods in terms of the probability of helping a person who dropped an object, needed directions to a hospital, or needed to make change for a coin, and people on the streets were less likely to be alone in the deprived neighbourhood than the affluent one. We conclude that there can be dramatic local differences in cooperative behaviour within the same city, and that these need further theoretical explanation

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Z′ gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/γ bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fb−1 in the e + e − channel and 5.0 fb−1 in the μ + μ −channel. A Z ′ boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Z′ Models

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore