473 research outputs found

    Influence of ischemic core muscle fibers on surface depolarization potentials in superfused cardiac tissue preparations: a simulation study

    Get PDF
    Thin-walled cardiac tissue samples superfused with oxygenated solutions are widely used in experimental studies. However, due to decreased oxygen supply and insufficient wash out of waste products in the inner layers of such preparations, electrophysiological functions could be compromised. Although the cascade of events triggered by cutting off perfusion is well known, it remains unclear as to which degree electrophysiological function in viable surface layers is affected by pathological processes occurring in adjacent tissue. Using a 3D numerical bidomain model, we aim to quantify the impact of superfusion-induced heterogeneities occurring in the depth of the tissue on impulse propagation in superficial layers. Simulations demonstrated that both the pattern of activation as well as the distribution of extracellular potentials close to the surface remain essentially unchanged. This was true also for the electrophysiological properties of cells in the surface layer, where most relevant depolarization parameters varied by less than 5.5 %. The main observed effect on the surface was related to action potential duration that shortened noticeably by 53 % as hypoxia deteriorated. Despite the known limitations of such experimental methods, we conclude that superfusion is adequate for studying impulse propagation and depolarization whereas repolarization studies should consider the influence of pathological processes taking place at the core of tissue sample

    What effect does physician "profiling" have on inpatient physician satisfaction and hospital length of stay?

    Get PDF
    BACKGROUND: 2002 marked the first time that the rate of hospital spending in the United States outpaced the overall health care spending rate of growth since 1991. As hospital spending continues to grow and as reimbursement for hospital expenses has moved towards the prospective payment system, there is still increasing pressure to reduce costs. Hospitals have a major incentive to decrease resource utilization, including hospital length of stay. We evaluated whether physician profiling affects physician satisfaction and hospital length of stay, and assessed physicians' views concerning hospital cost containment and the quality of care they provide. METHODS: To determine if physician profiling affects hospital length of stay and/or physician satisfaction, we used quasi-experimental with before-versus-after and intervention-versus-control comparisons of length of stay data collected at an intervention and six control hospitals. Intervention hospital physicians were informed their length of stay would be compared to their peers and were given a questionnaire assessing their experience. RESULTS: Nearly half of attending pre-profiled physicians felt negative about the possibility of being profiled, while less than one-third of profiled physicians reported feeling negative about having been profiled. Nearly all physicians greatly enjoyed their ward month. Length of stay at the profiled site decreased by an additional 1/3 of a day in the profiling year, compared to the non-profiled sites (p < 0.001). CONCLUSION: A relatively non-instrusive profiling intervention modestly reduced length of stay without adversely affecting physician satisfaction

    Cytotoxic targeting of F9 teratocarcinoma tumours with anti-ED-B fibronectin scFv antibody modified liposomes

    Get PDF
    We prepared small unilamellar liposomes derivatised with single chain antibody fragments specific for the ED-B domain of B-fibronectin. This extracellular matrix associated protein is expressed around newly forming blood vessels in the vicinity of many types of tumours. The single chain antibody fragments were functionalised by introduction of C-terminal cysteines and linked to liposomes via maleimide groups located at the terminal ends of poly(ethylene glycol) modified phospholipids. The properties of these anti-ED-B single chain antibody fragments-liposomes were analysed in vitro on ED-B fibronectin expressing Caco-2 cells and in vivo by studying their biodistribution and their therapeutic potential in mice bearing subcutanous F9 teratocarcinoma tumours. Radioactively labelled (114mIndium) single chain antibody fragments-liposomes accumulated in the tumours at 2–3-fold higher concentrations during the first 2 h after i.v. injection compared to unmodified liposomes. After 6–24 h both liposome types were found in similar amounts (8–10% injected dose g−1) in the tumours. Animals treated i.v. with single chain antibody fragments-liposomes containing the new cytotoxic agent 2′-deoxy-5-fluorouridylyl-N4-octadecyl-1-β-D-arabinofuranosylcytosine (30 mg kg-1 per dose, five times every 24 h) showed a reduction of tumour growth by 62–90% determined on days 5 and 8, respectively, compared to animals receiving control liposomes. Histological analysis revealed a marked reduction of F9 tumour cells and excessive deposition of fibronectin in the extracellular matrix after treatment with single chain antibody fragments-2-dioxy-5-fluorouridylyl-N4-octadecyl-1-β-D-arabinofuranosylcytosine-liposomes. Single chain antibody fragments-liposomes targeted to ED-B fibronectin positive tumours therefore represent a promising and versatile novel drug delivery system for the treatment of tumours

    The GTPase RalA Regulates Different Steps of the Secretory Process in Pancreatic β-Cells

    Get PDF
    BACKGROUND: RalA and RalB are multifuntional GTPases involved in a variety of cellular processes including proliferation, oncogenic transformation and membrane trafficking. Here we investigated the mechanisms leading to activation of Ral proteins in pancreatic beta-cells and analyzed the impact on different steps of the insulin-secretory process. METHODOLOGY/PRINCIPAL FINDINGS: We found that RalA is the predominant isoform expressed in pancreatic islets and insulin-secreting cell lines. Silencing of this GTPase in INS-1E cells by RNA interference led to a decrease in secretagogue-induced insulin release. Real-time measurements by fluorescence resonance energy transfer revealed that RalA activation in response to secretagogues occurs within 3-5 min and reaches a plateau after 10-15 min. The activation of the GTPase is triggered by increases in intracellular Ca2+ and cAMP and is prevented by the L-type voltage-gated Ca2+ channel blocker Nifedipine and by the protein kinase A inhibitor H89. Defective insulin release in cells lacking RalA is associated with a decrease in the secretory granules docked at the plasma membrane detected by Total Internal Reflection Fluorescence microscopy and with a strong impairment in Phospholipase D1 activation in response to secretagogues. RalA was found to be activated by RalGDS and to be severely hampered upon silencing of this GDP/GTP exchange factor. Accordingly, INS-1E cells lacking RalGDS displayed a reduction in hormone secretion induced by secretagogues and in the number of insulin-containing granules docked at the plasma membrane. CONCLUSIONS/SIGNIFICANCE: Taken together, our data indicate that RalA activation elicited by the exchange factor RalGDS in response to a rise in intracellular Ca2+ and cAMP controls hormone release from pancreatic beta-cell by coordinating the execution of different events in the secretory pathway

    Longitudinal Replication Studies of GWAS Risk SNPs Influencing Body Mass Index over the Course of Childhood and Adulthood

    Get PDF
    Genome-wide association studies (GWAS) have identified multiple common variants associated with body mass index (BMI). In this study, we tested 23 genotyped GWAS-significant SNPs (p-value<5*10-8) for longitudinal associations with BMI during childhood (3–17 years) and adulthood (18–45 years) for 658 subjects. We also proposed a heuristic forward search for the best joint effect model to explain the longitudinal BMI variation. After using false discovery rate (FDR) to adjust for multiple tests, childhood and adulthood BMI were found to be significantly associated with six SNPs each (q-value<0.05), with one SNP associated with both BMI measurements: KCTD15 rs29941 (q-value<7.6*10-4). These 12 SNPs are located at or near genes either expressed in the brain (BDNF, KCTD15, TMEM18, MTCH2, and FTO) or implicated in cell apoptosis and proliferation (FAIM2, MAP2K5, and TFAP2B). The longitudinal effects of FAIM2 rs7138803 on childhood BMI and MAP2K5 rs2241423 on adulthood BMI decreased as age increased (q-value<0.05). The FTO candidate SNPs, rs6499640 at the 5 ′-end and rs1121980 and rs8050136 downstream, were associated with childhood and adulthood BMI, respectively, and the risk effects of rs6499640 and rs1121980 increased as birth weight decreased. The best joint effect model for childhood and adulthood BMI contained 14 and 15 SNPs each, with 11 in common, and the percentage of explained variance increased from 0.17% and 9.0*10−6% to 2.22% and 2.71%, respectively. In summary, this study evidenced the presence of long-term major effects of genes on obesity development, implicated in pathways related to neural development and cell metabolism, and different sets of genes associated with childhood and adulthood BMI, respectively. The gene effects can vary with age and be modified by prenatal development. The best joint effect model indicated that multiple variants with effects that are weak or absent alone can nevertheless jointly exert a large longitudinal effect on BMI

    Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the advances made during decades of research, the mechanisms by which glioma is initiated and established remain elusive. The discovery of glioma stem cells (GSCs) may help to elucidate the processes of gliomagenesis with respect to their phenotype, differentiation and tumorigenic capacity during initiation and progression. Research on GSCs is still in its infancy, so no definitive conclusions about their role can yet be drawn. To understand the biology of GSCs fully, it is highly desirable to establish permanent and biologically stable GSC lines.</p> <p>Methods</p> <p>In the current study, GSCs were isolated from surgical specimens of primary and recurrent glioma in a patient whose malignancy had progressed during the previous six months. The GSCs were cryopreserved and resuscitated periodically during long-term maintenance to establish glioma stem/progenitor cell (GSPC) lines, which were characterized by immunofluorescence, flow cytometry and transmission electronic microscopy. The primary and recurrent GSPC lines were also compared in terms of in vivo tumorigenicity and invasiveness. Molecular genetic differences between the two lines were identified by array-based comparative genomic hybridization and further validated by real-time PCR.</p> <p>Results</p> <p>Two GSPC lines, SU-1 (primary) and SU-2 (recurrent), were maintained <it>in vitro</it> for more than 44 months and 38 months respectively. Generally, the potentials for proliferation, self-renewal and multi-differentiation remained relatively stable even after a prolonged series of alternating episodes of cryopreservation and resuscitation. Intracranial transplantation of SU-1 cells produced relatively less invasive tumor mass in athymic nude mice, while SU-2 cells led to much more diffuse and aggressive lesions strikingly recapitulated their original tumors. Neither SU-1 nor SU-2 cells reached the terminal differentiation stage under conditions that would induce terminal differentiation in neural stem cells. The differentiation of most of the tumor cells seemed to be blocked at the progenitor cell phase: most of them expressed nestin but only a few co-expressed differentiation markers. Transmission electron microscopy showed that GSCs were at a primitive stage of differentiation with low autophagic activity. Array-based comparative genomic hybridization revealed genetic alterations common to both SU-1 and SU-2, including amplification of the oncogene <it>EGFR </it>and deletion of the tumor suppressor <it>PTEN</it>, while some genetic alterations such as amplification of <it>MTA1 </it>(metastasis associated gene 1) only occurred in SU-2.</p> <p>Conclusion</p> <p>The GSPC lines SU-1 and SU-2 faithfully retained the characteristics of their original tumors and provide a reliable resource for investigating the mechanisms of formation and recurrence of human gliomas with progressive malignancy. Such investigations may eventually have major impacts on the understanding and treatment of gliomas.</p

    Pediatric appendicitis rupture rate: a national indicator of disparities in healthcare access

    Get PDF
    BACKGROUND: The U.S. National Healthcare Disparities Report is a recent effort to measure and monitor racial and ethnic disparities in health and healthcare. The Report is a work in progress and includes few indicators specific to children. An indicator worthy of consideration is racial/ethnic differences in the rate of bad outcomes for pediatric acute appendicitis. Bad outcomes for this condition are indicative of poor access to healthcare, which is amenable to social and healthcare policy changes. METHODS: We analyzed the KID Inpatient Database, a nationally representative sample of pediatric hospitalization, to compare rates of appendicitis rupture between white, African American, Hispanic and Asian children. We ran weighted logistic regression models to obtain national estimates of relative odds of rupture rate for the four groups, adjusted for developmental, biological, socioeconomic, health services and hospital factors that might influence disease outcome. RESULTS: Rupture was a much more burdensome outcome than timely surgery and rupture avoidance. Rupture cases had 97% higher hospital charges and 175% longer hospital stays than non-rupture cases on average. These burdens disproportionately affected minority children, who had 24% – 38% higher odds of appendicitis rupture than white children, adjusting for age and gender. These differences were reduced, but remained significant after adjusting for other factors. CONCLUSION: The racial/ethnic disparities in pediatric appendicitis outcome are large and are preventable with timely diagnosis and surgery for all children. Furthermore, estimating this disparity using the KID survey is a relatively straightforward process. Therefore pediatric appendicitis rupture rate is a good candidate for inclusion in the National Healthcare Disparities Report. As with most other health and healthcare disparities, efforts to reduce disparities in income, wealth and access to care will most likely improve the odds of favorable outcome for this condition as well

    S100B Protein, Brain-Derived Neurotrophic Factor, and Glial Cell Line-Derived Neurotrophic Factor in Human Milk

    Get PDF
    Human milk contains a wide variety of nutrients that contribute to the fulfillment of its functions, which include the regulation of newborn development. However, few studies have investigated the concentrations of S100B protein, brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF) in human milk. The associations of the concentrations of S100B protein, BDNF, and GDNF with maternal factors are not well explored.To investigate the concentrations of S100B protein, BDNF, and GDNF in human milk and characterize the maternal factors associated with their levels in human milk, human milk samples were collected at days 3, 10, 30, and 90 after parturition. Levels of S100B protein, BDNF, and GDNF, and their mRNAs in the samples were detected. Then, these concentrations were compared with lactation and other maternal factors. S100B protein levels in human milk samples collected at 3, 10, 30, and 90 d after parturition were 1249.79±398.10, 1345.05±539.16, 1481.83±573.30, and 1414.39±621.31 ng/L, respectively. On the other hand, the BDNF concentrations in human milk samples were 10.99±4.55, 13.01±5.88, 13.35±6.43, and 2.83±5.47 µg/L, while those of GDNF were 10.90±1.65, 11.38±1., 11.29±3.10, and 11.40±2.21 g/L for the same time periods. Maternal post-pregnancy body mass index was positively associated with S100B levels in human milk (r = 0.335, P = 0.030<0.05). In addition, there was a significant correlation between the levels of S100B protein and BDNF (z = 2.09, P = 0.037<0.05). Delivery modes were negatively associated with the concentration of GDNF in human milk.S100B protein, BDNF, and GDNF are present in all samples of human milk, and they may be responsible for the long term effects of breast feeding

    Calcineurin Interacts with PERK and Dephosphorylates Calnexin to Relieve ER Stress in Mammals and Frogs

    Get PDF
    Background: The accumulation of misfolded proteins within the endoplasmic reticulum (ER) triggers a cellular process known as the Unfolded Protein Response (UPR). One of the earliest responses is the attenuation of protein translation. Little is known about the role that Ca 2+ mobilization plays in the early UPR. Work from our group has shown that cytosolic phosphorylation of calnexin (CLNX) controls Ca 2+ uptake into the ER via the sarco-endoplasmic reticulum Ca 2+-ATPase (SERCA) 2b. Methodology/Principal Findings: Here, we demonstrate that calcineurin (CN), a Ca 2+ dependent phosphatase, associates with the (PKR)-like ER kinase (PERK), and promotes PERK auto-phosphorylation. This association, in turn, increases the phosphorylation level of eukaryotic initiation factor-2 a (eIF2-a) and attenuates protein translation. Data supporting these conclusions were obtained from co-immunoprecipitations, pull-down assays, in-vitro kinase assays, siRNA treatments and [ 35 S]-methionine incorporation measurements. The interaction of CN with PERK was facilitated at elevated cytosolic Ca 2+ concentrations and involved the cytosolic domain of PERK. CN levels were rapidly increased by ER stressors, which could be blocked by siRNA treatments for CN-Aa in cultured astrocytes. Downregulation of CN blocked subsequent ER-stress-induced increases in phosphorylated elF2-a. CN knockdown in Xenopus oocytes predisposed them to induction of apoptosis. We also found that CLNX was dephosphorylated by CN when Ca 2+ increased. These data were obtained from [c 32 P]-CLN
    corecore