373 research outputs found
The Genetic Effect of Copy Number Variations on the Risk of Type 2 Diabetes in a Korean Population
BACKGROUND: Unlike Caucasian populations, genetic factors contributing to the risk of type 2 diabetes mellitus (T2DM) are not well studied in Asian populations. In light of this, and the fact that copy number variation (CNV) is emerging as a new way to understand human genomic variation, the objective of this study was to identify type 2 diabetes-associated CNV in a Korean cohort. METHODOLOGY/PRINCIPAL FINDINGS: Using the Illumina HumanHap300 BeadChip (317,503 markers), genome-wide genotyping was performed to obtain signal and allelic intensities from 275 patients with type 2 diabetes mellitus (T2DM) and 496 nondiabetic subjects (Total nβ=β771). To increase the sensitivity of CNV identification, we incorporated multiple factors using PennCNV, a program that is based on the hidden Markov model (HMM). To assess the genetic effect of CNV on T2DM, a multivariate logistic regression model controlling for age and gender was used. We identified a total of 7,478 CNVs (average of 9.7 CNVs per individual) and 2,554 CNV regions (CNVRs; 164 common CNVRs for frequency>1%) in this study. Although we failed to demonstrate robust associations between CNVs and the risk of T2DM, our results revealed a putative association between several CNVRs including chr15:45994758-45999227 (Pβ=β8.6E-04, P(corr)β=β0.01) and the risk of T2DM. The identified CNVs in this study were validated using overlapping analysis with the Database of Genomic Variants (DGV; 71.7% overlap), and quantitative PCR (qPCR). The identified variations, which encompassed functional genes, were significantly enriched in the cellular part, in the membrane-bound organelle, in the development process, in cell communication, in signal transduction, and in biological regulation. CONCLUSION/SIGNIFICANCE: We expect that the methods and findings in this study will contribute in particular to genome studies of Asian populations
Identification of differentially expressed genes using an annealing control primer system in stage III serous ovarian carcinoma
<p>Abstract</p> <p>Background</p> <p>Most patients with ovarian cancer are diagnosed with advanced stage disease (<it>i.e</it>., stage III-IV), which is associated with a poor prognosis. Differentially expressed genes (DEGs) in stage III serous ovarian carcinoma compared to normal tissue were screened by a new differential display method, the annealing control primer (ACP) system. The potential targets for markers that could be used for diagnosis and prognosis, for stage III serous ovarian cancer, were found by cluster and survival analysis.</p> <p>Methods</p> <p>The ACP-based reverse transcriptase polymerase chain reaction (RT PCR) technique was used to identify DEGs in patients with stage III serous ovarian carcinoma. The DEGs identified by the ACP system were confirmed by quantitative real-time PCR. Cluster analysis was performed on the basis of the expression profile produced by quantitative real-time PCR and survival analysis was carried out by the Kaplan-Meier method and Cox proportional hazards multivariate model; the results of gene expression were compared between chemo-resistant and chemo-sensitive groups.</p> <p>Results</p> <p>A total of 114 DEGs were identified by the ACP-based RT PCR technique among patients with stage III serous ovarian carcinoma. The DEGs associated with an apoptosis inhibitory process tended to be up-regulated clones while the DEGs associated with immune response tended to be down-regulated clones. Cluster analysis of the gene expression profile obtained by quantitative real-time PCR revealed two contrasting groups of DEGs. That is, a group of genes including: <it>SSBP1</it>, <it>IFI6 DDT</it>, <it>IFI27</it>, <it>C11orf92</it>, <it>NFKBIA</it>, <it>TNXB</it>, <it>NEAT1 </it>and <it>TFG </it>were up-regulated while another group of genes consisting of: <it>LAMB2</it>, <it>XRCC6</it>, <it>MEF2C</it>, <it>RBM5</it>, <it>FOXP1</it>, <it>NUDCP2</it>, <it>LGALS3</it>, <it>TMEM185A</it>, and <it>C1S </it>were down-regulated in most patients. Survival analysis revealed that the up-regulated genes such as <it>DDAH2, RNase K and TCEAL2 </it>might be associated with a poor prognosis. Furthermore, the prognosis of patients with chemo-resistance was predicted to be very poor when genes such as <it>RNase K, FOXP1</it>, <it>LAMB2 </it>and <it>MRVI1 </it>were up-regulated.</p> <p>Conclusion</p> <p>The DEGs in patients with stage III serous ovarian cancer were successfully and reliably identified by the ACP-based RT PCR technique. The DEGs identified in this study might help predict the prognosis of patients with stage III serous ovarian cancer as well as suggest targets for the development of new treatment regimens.</p
The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum
The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in βspf1 cells and an increase following itβs overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders
Differences in risk factors for children with special health care needs (CSHCN) receiving needed specialty care by socioeconomic status
<p>Abstract</p> <p>Background</p> <p>The purpose of this study is to identify factors affecting CSHCN's receiving needed specialty care among different socioeconomic levels. Previous literature has shown that Socioeconomic Status (SES) is a significant factor in CHSHCN receiving access to healthcare. Other literature has shown that factors of insurance, family size, race/ethnicity and sex also have effects on these children's receipt of care. However, this literature does not address whether other factors such as maternal education, geographic location, age, insurance type, severity of condition, or race/ethnicity have different effects on receiving needed specialty care for children in each SES level.</p> <p>Methods</p> <p>Data were obtained from the National Survey of Children with Special Health Care Needs, 2000β2002. The study analyzed the survey which studies whether CHSCN who needed specialty care received it. The analysis included demographic characteristics, geographical location of household, severity of condition, and social factors. Multiple logistic regression models were constructed for SES levels defined by federal poverty level: < 199%; 200β299%; β₯ 300%.</p> <p>Results</p> <p>For the poorest children (,199% FPL) being uninsured had a strong negative effect on receiving all needed specialty care. Being Hispanic was a protective factor. Having more than one adult in the household had a positive impact on receipt of needed specialty care but a larger number of children in the family had a negative impact. For the middle income group of children (200β299% of FPL severity of condition had a strong negative association with receipt of needed specialty care.</p> <p>Children in highest income group (> 300% FPL) were positively impacted by living in the Midwest and were negatively impacted by the mother having only some college compared to a four-year degree.</p> <p>Conclusion</p> <p>Factors affecting CSHCN receiving all needed specialty care differed among socioeconomic groups. These differences should be addressed in policy and practice. Future research should explore the CSHCN population by income groups to better serve this population</p
Zebrafish Her8a Is Activated by Su(H)-Dependent Notch Signaling and Is Essential for the Inhibition of Neurogenesis
Understanding how diversity of neural cells is generated is one of the main tasks of developmental biology. The Hairy/E(spl) family members are potential targets of Notch signaling, which has been shown to be fundamental to neural cell maintenance, cell fate decisions, and compartment boundary formation. However, their response to Notch signaling and their roles in neurogenesis are still not fully understood. In the present study, we isolated a zebrafish homologue of hairy/E(spl), her8a, and showed this gene is specifically expressed in the developing nervous system. her8a is positively regulated by Su(H)-dependent Notch signaling as revealed by a Notch-defective mutant and injection of variants of the Notch intracellular regulator, Su(H). Morpholino knockdown of Her8a resulted in upregulation of proneural and post-mitotic neuronal markers, indicating that Her8a is essential for the inhibition of neurogenesis. In addition, markers for glial precursors and mature glial cells were down-regulated in Her8a morphants, suggesting Her8a is required for gliogenesis. The role of Her8a and its response to Notch signaling is thus similar to mammalian HES1, however this is the converse of what is seen for the more closely related mammalian family member, HES6. This study not only provides further understanding of how the fundamental signaling pathway, Notch signaling, and its downstream genes mediate neural development and differentiation, but also reveals evolutionary diversity in the role of H/E(spl) genes
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Pten (phosphatase and tensin homologue gene) haploinsufficiency promotes insulin hypersensitivity
AIMS/HYPOTHESIS: Insulin controls glucose metabolism via multiple signalling pathways, including the phosphatidylinositol 3-kinase (PI3K) pathway in muscle and adipose tissue. The protein/lipid phosphatase Pten (phosphatase and tensin homologue deleted on chromosome 10) attenuates PI3K signalling by dephosphorylating the phosphatidylinositol 3,4,5-trisphosphate generated by PI3K. The current study was aimed at investigating the effect of haploinsufficiency for Pten on insulin-stimulated glucose uptake. MATERIALS AND METHODS: Insulin sensitivity in Pten heterozygous (Pten(+/β)) mice was investigated in i.p. insulin challenge and glucose tolerance tests. Glucose uptake was monitored in vitro in primary cultures of myocytes from Pten(+/β) mice, and in vivo by positron emission tomography. The phosphorylation status of protein kinase B (PKB/Akt), a downstream signalling protein in the PI3K pathway, and glycogen synthase kinase 3Ξ² (GSK3Ξ²), a substrate of PKB/Akt, was determined by western immunoblotting. RESULTS: Following i.p. insulin challenge, blood glucose levels in Pten(+/β) mice remained depressed for up to 120Β min, whereas glucose levels in wild-type mice began to recover after approximately 30Β min. After glucose challenge, blood glucose returned to normal about twice as rapidly in Pten(+/β) mice. Enhanced glucose uptake was observed both in Pten(+/β) myocytes and in skeletal muscle of Pten(+/β) mice by PET. PKB and GSK3Ξ² phosphorylation was enhanced and prolonged in Pten(+/β) myocytes. CONCLUSIONS/INTERPRETATION: Pten is a key negative regulator of insulin-stimulated glucose uptake in vitro and in vivo. The partial reduction of Pten due to Pten haploinsufficiency is enough to elicit enhanced insulin sensitivity and glucose tolerance in Pten(+/β) mice
Divergent Roles of Clock Genes in Retinal and Suprachiasmatic Nucleus Circadian Oscillators
The retina is both a sensory organ and a self-sustained circadian clock. Gene targeting studies have revealed that mammalian circadian clocks generate molecular circadian rhythms through coupled transcription/translation feedback loops which involve 6 core clock genes, namely Period (Per) 1 and 2, Cryptochrome (Cry) 1 and 2, Clock, and Bmal1 and that the roles of individual clock genes in rhythms generation are tissue-specific. However, the mechanisms of molecular circadian rhythms in the mammalian retina are incompletely understood and the extent to which retinal neural clocks share mechanisms with the suprachiasmatic nucleus (SCN), the central neural clock, is unclear. In the present study, we examined the rhythmic amplitude and period of real-time bioluminescence rhythms in explants of retina from Per1-, Per2-, Per3-, Cry1-, Cry2-, and Clock-deficient mice that carried transgenic PERIOD2::LUCIFERASE (PER2::LUC) or Period1::luciferase (Per1::luc) circadian reporters. Per1-, Cry1- and Clock-deficient retinal and SCN explants showed weakened or disrupted rhythms, with stronger effects in retina compared to SCN. Per2, Per3, and Cry2 were individually dispensable for sustained rhythms in both tissues. Retinal and SCN explants from double knockouts of Cry1 and Cry2 were arrhythmic. Gene effects on period were divergent with reduction in the number of Per1 alleles shortening circadian period in retina, but lengthening it in SCN, and knockout of Per3 substantially shortening retinal clock period, but leaving SCN unaffected. Thus, the retinal neural clock has a unique pattern of clock gene dependence at the tissue level that it is similar in pattern, but more severe in degree, than the SCN neural clock, with divergent clock gene regulation of rhythmic period
Hyaluronan Binding Motifs of USP17 and SDS3 Exhibit Anti-Tumor Activity
BACKGROUND: We previously reported that the USP17 deubiquitinating enzyme having hyaluronan binding motifs (HABMs) interacts with human SDS3 (suppressor of defective silencing 3) and specifically deubiquitinates Lys-63 branched polyubiquitination of SDS3 resulting in negative regulation of histone deacetylase (HDAC) activity in cancer cells. Furthermore, USP17 and SDS3 mutually interact with each other to block cell proliferation in HeLa cells but the mechanism for this inhibition in cell proliferation is not known. We wished to investigate whether the HABMs of USP17 were responsible for tumor suppression activity. METHODOLOGY/PRINCIPAL FINDINGS: Similarly to USP17, we have identified that SDS3 also has three consecutive HABMs and shows direct binding with hyaluronan (HA) using cetylpyridinium chloride (CPC) assay. Additionally, HA oligosaccharides (6-18 sugar units) competitively block binding of endogenous HA polymer to HA binding proteins. Thus, administration of HA oligosaccharides antagonizes the interaction between HA and USP17 or SDS3. Interestingly, HABMs deleted USP17 showed lesser interaction with SDS3 but retain its deubiquitinating activity towards SDS3. The deletion of HABMs of USP17 could not alter its functional regulation on SDS3-associated HDAC activity. Furthermore, to explore whether HABMs in USP17 and SDS3 are responsible for the inhibition of cell proliferation, we investigated the effect of USP17 and SDS3-lacking HABMs on cell proliferation by soft agar, apoptosis, cell migration and cell proliferation assays. CONCLUSIONS: Our results have demonstrated that these HABMs in USP17 and its substrate SDS3 are mainly involved in the inhibition of anchorage-independent tumor growth
- β¦