16 research outputs found

    Hospital-Level Nicu Capacity, Utilization, and 30-Day Outcomes in Texas

    Get PDF
    IMPORTANCE: Risk-adjusted neonatal intensive care unit (NICU) utilization and outcomes vary markedly across regions and hospitals. The causes of this variation are poorly understood. OBJECTIVE: to assess the association of hospital-level NICU bed capacity with utilization and outcomes in newborn cohorts with differing levels of health risk. DESIGN, SETTING, AND PARTICIPANTS: This population-based retrospective cohort study included all Medicaid-insured live births in Texas from 2010 to 2014 using linked vital records and maternal and newborn claims data. Participants were Medicaid-insured singleton live births (LBs) with birth weights of at least 400 g and gestational ages between 22 and 44 weeks. Newborns were grouped into 3 cohorts: very low birth weight (VLBW; \u3c1500 \u3eg), late preterm (LPT; 34-36 weeks\u27 gestation), and nonpreterm newborns (NPT; ≥37 weeks\u27 gestation). Data analysis was conducted from January 2022 to October 2023. EXPOSURE: Hospital NICU capacity measured as reported NICU beds/100 LBs, adjusted (ie, allocated) for transfers. MAIN OUTCOMES AND MEASURES: NICU admissions and special care days; inpatient mortality and 30-day postdischarge adverse events (ie, mortality, emergency department visit, admission, observation stay). RESULTS: The overall cohort of 874 280 single LBs included 9938 VLBW (5054 [50.9%] female; mean [SD] birth weight, 1028.9 [289.6] g; mean [SD] gestational age, 27.6 [2.6] wk), 63 160 LPT (33 684 [53.3%] female; mean [SD] birth weight, 2664.0 [409.4] g; mean [SD] gestational age, 35.4 [0.8] wk), and 801 182 NPT (407 977 [50.9%] female; mean [SD] birth weight, 3318.7 [383.4] g; mean [SD] gestational age, 38.9 [1.0] wk) LBs. Median (IQR) NICU capacity was 0.84 (0.57-1.30) allocated beds/100 LB/year. For VLBW newborns, NICU capacity was not associated with the risk of NICU admission or number of special care days. For LPT newborns, birth in hospitals with the highest compared with the lowest category of capacity was associated with a 17% higher risk of NICU admission (adjusted risk ratio [aRR], 1.17; 95% CI, 1.01-1.33). For NPT newborns, risk of NICU admission was 55% higher (aRR, 1.55; 95% CI, 1.22-1.97) in the highest- vs the lowest-capacity hospitals. The number of special care days for LPT and NPT newborns was 21% (aRR, 1.21; 95% CI,1.08-1.36) and 37% (aRR, 1.37; 95% CI, 1.08-1.74) higher in the highest vs lowest capacity hospitals, respectively. Among LPT and NPT newborns, NICU capacity was associated with higher inpatient mortality and 30-day postdischarge adverse events. CONCLUSIONS AND RELEVANCE: In this cohort study of Medicaid-insured newborns in Texas, greater hospital NICU bed supply was associated with increased NICU utilization in newborns born LPT and NPT. Higher capacity was not associated with lower risk of adverse events. These findings raise important questions about how the NICU is used for newborns with lower risk

    Efficacy of live attenuated, vector and immune complex infectious bursal disease virus (IBDV) vaccines in preventing field strain bursa colonization: A European multicentric study

    No full text
    Infectious bursal disease virus (IBDV) is among the most relevant and widespread immunosuppressive agents, which can severely damage poultry farming by causing direct losses, predisposing the host to secondary diseases and reducing the efficacy of vaccination protocols against other infections. IBDV has thus been the object of intense control activities, largely based on routine vaccination. However, the need for protecting animals from the infection in the first period of the production cycle, when the bursa susceptibility is higher, clashes with the blanketing effect of maternally derived antibodies. To overcome this issue, other strategies have been developed besides live attenuated vaccines, including vector vaccines and immune complex (icx) ones. The present study aims to investigate, in field conditions, the efficacy of these approaches in preventing IBDV infection in laying chickens vaccinated with either live attenuated, vector or immune complex (icx) vaccines. For this purpose, a multicentric study involving 481 farms located in 11 European countries was organized and IBDV infection diagnosis and strain characterization was performed at 6 weeks of age using a molecular approach. Vaccine strains were commonly detected in flocks vaccinated with live or icx vaccines. However, a significantly higher number of field strains (characterized as very virulent IBDVs) was detected in flocks vaccinated with vector vaccines, suggesting their lower capability of preventing bursal colonization. Different from vector vaccines, live and icx ones have a marked bursal tropism. It can thus be speculated that vaccine virus replication in these sites could limit vvIBDV replication by direct competition or because of a more effective activation of innate immunity. Although such different behavior doesn't necessarily affect clinical protection, further studies should be performed to evaluate if vvIBDV replication could still be associated with subclinical losses and/or for viral circulation in a “vaccinated environment” could drive viral evolution and favor the emergence of vaccine-escape variants. Copyright © 2022 Ramon, Legnardi, Cecchinato, Cazaban, Tucciarone, Fiorentini, Gambi, Mato, Berto, Koutoulis and Franzo

    A Herpesvirus of Turkey-Based Vector Vaccine Reduces Transmission of Newcastle Disease Virus in Commercial Broiler Chickens with Maternally Derived Antibodies

    No full text
    Newcastle Disease is one of the most important infectious poultry diseases worldwide and is associated with high morbidity, mortality, and economic loss. In several countries, vaccination is applied to prevent and control outbreaks; however, information on the ability of vaccines to reduce transmission of ND virus (NDV) is sparse. Here we quantified the transmission of velogenic NDV among 42-day-old broilers. Chickens were either vaccinated with a single dose of a vector vaccine expressing the F protein (rHVT-ND) at day-old in the presence of maternally derived antibodies or kept unvaccinated. Seeders were challenged 8 h before the co-mingling with the corresponding contacts from the same group. Infection was monitored by daily testing of cloacal and oro-nasal swabs with reverse transcription-real-time PCR and by serology. Vaccinated birds were completely protected against clinical disease and virus excretion was significantly reduced compared to the unvaccinated controls that all died during the experiment. The reproduction ratio, which is the average number of secondary infections caused by an infectious bird, was significantly lower in the vaccinated group (0.82 (95% CI 0.38–1.75)) than in the unvaccinated group (3.2 (95% CI 2.06–4.96)). Results of this study demonstrate the potential of rHVT-ND vaccine in prevention and control of ND outbreaks

    A herpesvirus of Turkey-based vector vaccine reduces transmission of newcastle disease virus in commercial broiler chickens with maternally derived antibodies

    Get PDF
    Newcastle Disease is one of the most important infectious poultry diseases worldwide and is associated with high morbidity, mortality, and economic loss. In several countries, vaccination is applied to prevent and control outbreaks; however, information on the ability of vaccines to reduce transmission of ND virus (NDV) is sparse. Here we quantified the transmission of velogenic NDV among 42-day-old broilers. Chickens were either vaccinated with a single dose of a vector vaccine expressing the F protein (rHVT-ND) at day-old in the presence of maternally derived antibodies or kept unvaccinated. Seeders were challenged 8 h before the co-mingling with the corresponding contacts from the same group. Infection was monitored by daily testing of cloacal and oro-nasal swabs with reverse transcription-real-time PCR and by serology. Vaccinated birds were completely protected against clinical disease and virus excretion was significantly reduced compared to the unvaccinated controls that all died during the experiment. The reproduction ratio, which is the average number of secondary infections caused by an infectious bird, was significantly lower in the vaccinated group (0.82 (95%CI 0.38–1.75)) than in the unvaccinated group (3.2 (95% CI 2.06–4.96)). Results of this study demonstrate the potential of rHVT-ND vaccine in prevention and control of ND outbreaks
    corecore