13 research outputs found

    Kitten mortality in the United Kingdom: a retrospective analysis of 274 histopathological examinations (1986 to 2000)

    No full text
    The postmortem findings in 274 kittens were reviewed. The kittens were grouped by age at death: perinatal (< one day), neonatal (one to 14 days), preweaning (15 to 34 days) and postweaning (35 to 112 days); 203 (74 per cent) of the kittens were postweaning and 38 (14 per cent) were preweaning. Infectious disease was identified in 55 per cent of the kittens, and 71 per cent of the infectious disease was viral and detected significantly more frequently in rescue shelter kittens than in kittens from private homes. Twenty-five per cent of all kitten mortality was due to feline parvovirus (FPV). During the neonatal and preweaning periods, the main viral infections were feline herpesvirus and calicivirus. Feline infectious peritonitis caused the death of 17 kittens in the postweaning period. The rescue shelter kittens were significantly younger than the kittens from private homes (median survival 49 and 56 days) and were more likely to have FPV. The non-pedigree kittens were significantly younger than the pedigree kittens (42 v 56 days), and the pedigree kittens were significantly less likely to originate from rescue shelters. There was no significant difference between the age distribution of the male and female kittens. No diagnosis could be found in 33 per cent of the kittens, and this failure was correlated significantly with the submission of tissue samples as opposed to the whole carcase

    Outbreak of dysautonomia (Key-Gaskell syndrome) in a closed colony of pet cats

    No full text
    Six of eight pet cats in a closed colony developed overt signs of dysautonomia over a period of seven days; two of them died and one was euthanased. Dysautonomia was confirmed histopathologically in two of these cats, and in the others the diagnosis was based on the characteristic clinical and radiographic findings. In the two apparently unaffected cats abnormal oesophageal motility was demonstrated by fluoroscopy, suggesting that there may be a subclinical form of the disease. The surviving cats had higher and more variable heart rates (mean 165 bpm) than the non-survivors (mean 121 bpm)

    What is the role of a-linolenic acid for mammals?

    Full text link
    This review examines the data pertaining to an important and often underrated EFA, &alpha;-linolenic acid (ALA). It examines its sources, metabolism, and biological effects in various population studies, in vitro, animal, and human intervention studies. The main role of ALA was assumed to be as a precursor to the longer-chain n-3 PUFA, EPA and DHA, and particularly for supplying DHA for neural tissue. This paper reveals that the major metabolic route of ALA metabolism is &beta;-oxidation. Furthermore, ALA accumulates in specific sites in the body of mammals (carcass, adipose, and skin), and only a small proportion of the fed ALA is converted to DHA. There is some evidence that ALA may be involved with skin and fur function. There is continuing debate regarding whether ALA has actions of its own in relation to the cardiovascular system and neural function. Cardiovascular disease and cancer are two of the major burdens of disease in the 21st century, and emerging evidence suggests that diets containing ALA are associated with reductions in total deaths and sudden cardiac death. There may be aspects of the action and, more importantly, the metabolism of ALA that need to be elucidated, and these will help us understand the biological effects of this compound better. Additionally, we must not forget that ALA is part of the whole diet and should be seen in this context, not in isolation.<br /
    corecore