83 research outputs found
Comportamento de genótipos de trigo de sequeiro nos ensaios para determinação VCU, em Coromandel-MG, no ano de 2007.
bitstream/CNPT-2010/40329/1/p-bp56.pd
Prediction of extreme events in the OFC model on a small world network
We investigate the predictability of extreme events in a dissipative
Olami-Feder-Christensen model on a small world topology. Due to the mechanism
of self-organized criticality, it is impossible to predict the magnitude of the
next event knowing previous ones, if the system has an infinite size. However,
by exploiting the finite size effects, we show that probabilistic predictions
of the occurrence of extreme events in the next time step are possible in a
finite system. In particular, the finiteness of the system unavoidably leads to
repulsive temporal correlations of extreme events. The predictability of those
is higher for larger magnitudes and for larger complex network sizes. Finally,
we show that our prediction analysis is also robust by remarkably reducing the
accessible number of events used to construct the optimal predictor.Comment: 5 pages, 4 figure
Seismic slip on an upper-plate normal fault during a large subduction megathrust rupture
Quantification of stress accumulation and release during subduction zone seismic cycles requires an understanding of the distribution of fault slip during earthquakes. Reconstructions of slip are typically constrained to a single, known fault plane. Yet, slip has been shown to occur on multiple faults within the subducting plate1 owing to stress triggering2, resulting in phenomena such as earthquake doublets3. However, rapid stress triggering from the plate interface to faults in the overriding plate has not been documented. Here we analyse seismic data from the magnitude 7.1 Araucania earthquake that occurred in the Chilean subduction zone in 2011. We find that the earthquake, which was reported as a single event in global moment tensor solutions4, 5, was instead composed of two ruptures on two separate faults. Within 12?s a thrust earthquake on the plate interface triggered a second large rupture on a normal fault 30?km away in the overriding plate. This configuration of partitioned rupture is consistent with normal-faulting mechanisms in the ensuing aftershock sequence. We conclude that plate interface rupture can trigger almost instantaneous slip in the overriding plate of a subduction zone. This shallow upper-plate rupture may be masked from teleseismic data, posing a challenge for real-time tsunami warning systems
Recommended from our members
Spatial constancy of attention across eye movements is mediated by the presence of visual objects
Recent studies have shown that attentional facilitation lingers at the retinotopic coordinates of a previously attended position after an eye movement. These results are intriguing, because the retinotopic location becomes behaviorally irrelevant once the eyes have moved. Critically, in these studies participants were asked to maintain attention on a blank location of the screen. In the present study, we examined whether the continuing presence of a visual object at the cued location could affect the allocation of attention across eye movements. We used a trans-saccadic cueing paradigm in which the relevant positions could be defined or not by visual objects (simple square outlines). We find an attentional benefit at the spatiotopic location of the cue only when the object (the placeholder) has been continuously present at that location. We conclude that the presence of an object at the attended location is a critical factor for the maintenance of spatial constancy of attention across eye movements, a finding that helps to reconcile previous conflicting results
- …