23 research outputs found

    A 2-YEAR STUDY OF ENTERIC INFECTIONS ASSOCIATED WITH DIARRHEAL DISEASES IN CHILDREN IN URBAN SOMALIA

    No full text
    A hospital-based systematic sample of 1667 children with severe diarrhoeal disease was studied in Mogadishu, Somalia, throughout 1983 and 1984. One or more enteric pathogens were found in 61% of the patients. Rotavirus (25%), enterotoxigenic Escherichia coli (11%), Shigella spp. (9%), Aeromonas hydrophila (9%), Giardia lamblia trophozoites (8%), Campylobacter jejuni (8%), and Vibrio cholerae non-O1 (6%) were the most frequently identified pathogens. Age-specific detection rates of enteric pathogens and helminths, seasonal patterns, and relationship of some specific infections with feeding status and main clinical features have been defined for all the sample examine

    Stability of plasmid content in Salmonella wien in late phases of the epidemic history

    No full text
    Prevalence, genetic characteristics, and EcoRI cleavage analysis of plasmids identified in clinical strains of Salmonella wien isolated in recent years showed that the plasmid content in this serotype has remained uniform and stable over more than a decade and also late in the epidemic history. No correlation between decrease in S. wien isolations and naturally occurring systematic changes in the DNA of its most common FIme plasmid was structurally detectable

    CadC is the preferential target of a convergent evolution driving enteroinvasive Escherichia coli toward a lysine decarboxylase-defective phenotype

    No full text
    Enteroinvasive E. coli (EIEC), like Shigella, is the etiological agent of bacillary dysentery, a particularly severe syndrome in children in developing countries. All EIEC strains share with Shigella the inability to synthesize lysine decarboxylase (the LDC phenotype). The lack of this function is considered a pathoadaptive mutation whose emergence was necessary to obtain the full expression of invasiveness. Cadaverine, the product of lysine decarboxylation, is a small polyamine which interferes mainly with the inflammatory process induced by dysenteric bacteria. Genes coding for lysine decarboxylase and its transporter constitute a single operon (cadBA) and are expressed at low pH under the positive control of CadC. This regulator is an inner membrane protein that is able to sense pH variation and to respond by transcriptionally activating the cadBA genes. In this study we show that, unlike in Shigella, mutations affecting the cad locus in the EIEC strains we have analyzed are not followed by a novel gene arrangement and that the LCD(-) phenotype is dependent mainly on inactivation of the cadC gene. Introduction of a functional CadC restores cadaverine expression in all EIEC strains harboring either an IS2 element or a defective cadC promoter. Comparative analysis between the cad regions of S. flexneri and EIEC suggests that the LDC(-) phenotype has been attained by different strategies within the E. coli specie

    Polyamines: emerging players in bacteria-host interactions

    No full text
    Polyamines are small polycationic molecules found in almost all cells and associated with a wide variety of physiological processes. In recent years it has become increasingly clear that, in addition to core physiological functions, polyamines play a crucial role in bacterial pathogenesis. Considerable evidence has built up that bacteria have evolved mechanisms to turn these molecules to their own advantage and a novel standpoint to look at host-bacterium interactions emerges from the interplay among polyamines, host cells and infecting bacteria. In this review, we highlight how human bacterial pathogens have developed their own resourceful strategies to exploit polyamines or manipulate polyamine-related processes to optimize their fitness within the host. Besides contributing to a better understanding of the complex relationship between a pathogen and its host, acquisitions in this field have a significant potential towards the development of novel antibacterial therapeutic approaches

    The Salmonella wien virulence plasmid pZM3 carries Tn1935, a multiresistance transposon containing a composite IS1936-kanamycin resistance element

    No full text
    Tn1935, a 23.5-kb transposon mediating resistance to ampicillin, kanamycin, mercury, spectinomycin, and sulfonamide was isolated from pZM3, an IncFIme virulence plasmid from Salmonella wien. Tn1935 possesses the entire sequence of Tn21 and contains two additional DNA segments of 0.95 and 2.7 kb carrying the ampicillin and kanamycin resistance genes, respectively. The latter is part of a composite element since it is flanked by two IS15-like insertion sequences (IS1936) in direct orientation. IS1936 is about 800 bp long and is closely related to IS15 delta, IS26, IS46, IS140, and IS176. Functional analysis of IS1936-mediated cointegrates shows that both insertion sequences are active and able to form cointegrates at the same frequency. Resolution of the cointegrates requires the presence of the host Rec system. The presence of the composite IS1936-element within Tn1935 supports the hypothesis that multidrug resistance transposons evolved by insertion of antibiotic determinants which are themselves transposabl

    Composite IS1 elements encoding hydroxamate-mediated iron uptake in FIme plasmids from epidemic Salmonella spp

    No full text
    Eleven FIme plasmids representative of those identified in epidemic strains of Salmonella wien and Salmonella typhimurium isolated in North Africa, Europe, and the Middle East have been examined for the presence of determinants of toxigenicity, adherence, and iron-sequestering mechanisms. Chemical and genetic data indicated that all plasmids code for a hydroxamate-mediated iron assimilation system. Detailed analysis of derivative plasmids and cloned fragments of FIme plasmid pZM61 demonstrated that the general genetic and structural organization of the DNA region containing the genes for hydroxamate biosynthesis and cloacin DF13 receptor was virtually identical to that described for the aerobactin-mediated iron uptake system of pColV-K30. This DNA region is part of a composite element that is 16.7 kilobases long and carries its IS1 modules as inverted repeats. A very similar element is present in either orientation in all nine FIme plasmids analyzed

    Plasticity of the P junc promoter of ISEc11, a new insertion sequence of the IS1111 family

    No full text
    We describe identification and functional characterization of ISEc11, a new insertion sequence that is widespread in enteroinvasive E. coli (EIEC), in which it is always present on the virulence plasmid (pINV) and very frequently also present on the chromosome. ISEc11 is flanked by subterminal 13-bp inverted repeats (IRs) and is bounded by 3-bp terminal sequences, and it transposes with target specificity without generating duplication of the target site. ISEc11 is characterized by an atypical transposase containing the DEDD motif of the Piv/MooV family of DNA recombinases, and it is closely related to the IS1111 family. Transposition occurs by formation of minicircles through joining of the abutted ends and results in assembly of a junction promoter (P juncC) containing a -10 box in the interstitial sequence and a -35 box upstream of the right IR. A natural variant of ISEc11 (ISEc11p), found on EIEC pINV plasmids, contains a perfect duplication of the outermost 39 bp of the right end. Upon circularization, ISEc11p forms a junction promoter (P juncP) which, despite carrying -10 and -35 boxes identical to those of P juncC, exhibits 30-fold-greater strength in vivo. The discovery of only one starting point in primer extension experiments rules out the possibility that there are alternative promoter sites within the 39-bp duplication. Analysis of in vitro-generated transcripts confirmed that at limiting RNA polymerase concentrations, the activity of P juncP is 20-fold higher than the activity of P juncC. These observations suggest that the 39-bp duplication might host cis-acting elements that facilitate the binding of RNA polymerase to the promoter
    corecore