228 research outputs found

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurement of the W±Z boson pair-production cross section in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    published_or_final_versio

    Charged-particle distributions at low transverse momentum in √s=13 13 TeV pp interactions measured with the ATLAS detector at the LHC

    Get PDF
    Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 ÎŒb −1 ÎŒb−1 . The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators

    Measurement of the inelastic proton-proton cross section at √s=13 TeV with the ATLAS detector at the LHC

    Get PDF
    This Letter presents a measurement of the inelastic proton-proton cross section using 60  Όb −1 of pp collisions at a center-of-mass energy √s of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region (2.0710 −6 , where M X is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this Ο range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with M X >13  GeV . The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1±2.9  mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy

    Measurement of W+W− production in association with one jet in proton–proton collisions at sqrt(s) = 8TeV with the ATLAS detector

    Get PDF
    The production of W boson pairs in association with one jet in pp collisions at View the MathML sources=8 TeV is studied using data corresponding to an integrated luminosity of 20.3 fb−1 collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The cross section is measured in a fiducial phase-space region defined by the presence of exactly one electron and one muon, missing transverse momentum and exactly one jet with a transverse momentum above 25 GeV and a pseudorapidity of |η|<4.5|η|<4.5. The leptons are required to have opposite electric charge and to pass transverse momentum and pseudorapidity requirements. The fiducial cross section is found to be View the MathML sourceσWWfid,1-jet=136±6(stat)±14(syst)±3(lumi) fb. In combination with a previous measurement restricted to leptonic final states with no associated jets, the fiducial cross section of WW production with zero or one jet is measured to be View the MathML sourceσWWfid,≀1-jet=511±9(stat)±26(syst)±10(lumi) fb. The ratio of fiducial cross sections in final states with one and zero jets is determined to be 0.36±0.050.36±0.05. Finally, a total cross section extrapolated from the fiducial measurement of WW production with zero or one associated jet is reported. The measurements are compared to theoretical predictions and found in good agreement

    Search for pair production of Higgs bosons in the bb¯bb¯ final state using proton-proton collisions at √s=13  TeV with the ATLAS detector

    Get PDF
    A search for Higgs-boson pair production in the bb ¯ bb ¯ final state is carried out with 3.2  fb −1 of proton-proton collision data collected at s √ =13  TeV with the ATLAS detector. The data are consistent with the estimated background and are used to set upper limits on the production cross section of Higgs-boson pairs times branching ratio to bb ¯ bb ¯ for both nonresonant and resonant production. In the case of resonant production of Kaluza-Klein gravitons within the Randall-Sundrum model, upper limits in the 24 to 91 fb range are obtained for masses between 600 and 3000 GeV, at the 95% confidence level. The production cross section times branching ratio for nonresonant Higgs-boson pairs is also constrained to be less than 1.22 pb, at the 95% confidence level

    Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data

    Get PDF
    © 2016, CERN for the benefit of the ATLAS collaboration.The algorithms used by the ATLAS Collaboration to reconstruct and identify prompt photons are described. Measurements of the photon identification efficiencies are reported, using 4.9 fb- 1 of pp collision data collected at the LHC at s=7 TeV and 20.3 fb- 1 at s=8 TeV. The efficiencies are measured separately for converted and unconverted photons, in four different pseudorapidity regions, for transverse momenta between 10 GeV and 1.5 TeV. The results from the combination of three data-driven techniques are compared to the predictions from a simulation of the detector response, after correcting the electromagnetic shower momenta in the simulation for the average differences observed with respect to data. Data-to-simulation efficiency ratios used as correction factors in physics measurements are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5% and 10% in 7 TeV data and between 0.5% and 5.6% in 8 TeV data, depending on the photon transverse momentum and pseudorapidity

    Measurement of the cross section for inclusive isolated-photon production in pp collisions at √s=13TeV using the ATLAS detector

    Get PDF
    Inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13TeVis studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2fb−1. The cross section is measured as a function of the photon transverse energy above 125GeVin different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data
    • 

    corecore