34,852 research outputs found

    Cosmic homogeneity: a spectroscopic and model-independent measurement

    Get PDF
    Cosmology relies on the Cosmological Principle, i.e., the hypothesis that the Universe is homogeneous and isotropic on large scales. This implies in particular that the counts of galaxies should approach a homogeneous scaling with volume at sufficiently large scales. Testing homogeneity is crucial to obtain a correct interpretation of the physical assumptions underlying the current cosmic acceleration and structure formation of the Universe. In this Letter, we use the Baryon Oscillation Spectroscopic Survey to make the first spectroscopic and model-independent measurements of the angular homogeneity scale θh\theta_{\rm h}. Applying four statistical estimators, we show that the angular distribution of galaxies in the range 0.46 < z < 0.62 is consistent with homogeneity at large scales, and that θh\theta_{\rm h} varies with redshift, indicating a smoother Universe in the past. These results are in agreement with the foundations of the standard cosmological paradigm.Comment: 5 pages, 2 figures, Version accepted by MNRA

    Power-law statistics and stellar rotational velocities in the Pleiades

    Full text link
    In this paper we will show that, the non-gaussian statistics framework based on the Kaniadakis statistics is more appropriate to fit the observed distributions of projected rotational velocity measurements of stars in the Pleiades open cluster. To this end, we compare the results from the Îş\kappa and qq-distributions with the Maxwellian.Comment: 13 pages, 3 figure

    Physical parameters in the hot spots and jets of Compact Symmetric Objects

    Get PDF
    We present a model to determine the physical parameters of jets and hot spots of a sample of CSOs under very basic assumptions like synchrotron emission and minimum energy conditions. Based on this model we propose a simple evolutionary scenario for these sources assuming that they evolve in ram pressure equilibrium with the external medium and constant jet power. The parameters of our model are constrained from fits of observational data (radio luminosity, hot spot radius and hot spot advance speed) versus projected linear size. From these plots we conclude that CSOs evolve self-similarly and that their radio luminosity increases with linear size along the first kiloparsec. Assuming that the jets feeding CSOs are relativistic from both kinematical and thermodynamical points of view, we use the values of the pressure and particle number density within the hot spots to estimate the fluxes of momentum (thrust), energy, and particles of these relativistic jets. The mean jet power obtained in this way is within an order of magnitude that inferred for FRII sources, which is consistent with CSOs being the possible precursors of large doubles. The inferred flux of particles corresponds to, for a barionic jet, about a 10% of the mass accreted by a black hole of 108M⊙10^8 {\rm M_{\odot}} at the Eddington limit, pointing towards a very efficient conversion of accretion flow into ejection, or to a leptonic composition of jets.Comment: 11 pages, 2 figures. Accepted for publication in Astrophysical Journa

    Number-Phase Wigner Representation for Efficient Stochastic Simulations

    Full text link
    Phase-space representations based on coherent states (P, Q, Wigner) have been successful in the creation of stochastic differential equations (SDEs) for the efficient stochastic simulation of high dimensional quantum systems. However many problems using these techniques remain intractable over long integrations times. We present a number-phase Wigner representation that can be unraveled into SDEs. We demonstrate convergence to the correct solution for an anharmonic oscillator with small dampening for significantly longer than other phase space representations. This process requires an effective sampling of a non-classical probability distribution. We describe and demonstrate a method of achieving this sampling using stochastic weights.Comment: 7 pages, 1 figur
    • …
    corecore