511 research outputs found

    Imprints of a Primordial Preferred Direction on the Microwave Background

    Get PDF
    Rotational invariance is a well-established feature of low-energy physics. Violations of this symmetry must be extremely small today, but could have been larger in earlier epochs. In this paper we examine the consequences of a small breaking of rotational invariance during the inflationary era when the primordial density fluctuations were generated. Assuming that a fixed-norm vector picked out a preferred direction during the inflationary era, we explore the imprint it would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes of the spherical-harmonic coefficients. We suggest that it is natural to expect that the imprint on the primordial power spectrum of a preferred spatial direction is approximately scale-invariant, and examine a simple model in which this is true.Comment: 7 pages, no figures; v5: Corrections, as well as use of more standard convention, in section I

    Axions and Cosmic Magnetic Fields

    Full text link
    We argue that if axions are the dark matter, their coupling to electromagnetism results in exponential growth of a helical magnetic field when the axion field first rolls down its potential. After an inverse cascade, the relevant length scales to day are of order 10-100 kpc, of astrophysical interest. Our mechanism for allowing the field to grow relies on a nuance of MHD. Faraday's Law says that an electric field is needed to create a magnetic field. Previous authors relied on conventional Ohm's law to calculate E, but the resistivity is negligible and therefore they assume E is as well. We use a modified Ohm's Law that includes the effects of self-induction in limiting the current driven by a given E, which allows a magnetic field to grow

    Dark Matter and Dark Radiation

    Get PDF
    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ("dark electromagnetism") that couples only to dark matter, not to the Standard Model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark matter mass is sufficiently high and the dark fine-structure constant α^\hat\alpha is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on α^\hat\alpha comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies α^≲10−4\hat\alpha \lesssim 10^{-4} for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark matter dynamics, which remain to be explored.Comment: 14 pages, 6 figures Updated equations and figure

    Translational Invariance and the Anisotropy of the Cosmic Microwave Background

    Get PDF
    Primordial quantum fluctuations produced by inflation are conventionally assumed to be statistically homogeneous, a consequence of translational invariance. In this paper we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes of the spherical-harmonic coefficients.Comment: Notation improve

    Rapid Evolution of Sex-Pheromone-producing Enzyme in Drosophila

    Get PDF
    A wide range of organisms use sex pheromones to communicate with each other and to identify appropriate mating partners. While the evolution of chemical communication has been suggested to cause sexual isolation and speciation, the mechanisms that govern evolutionary transitions in sex pheromone production are poorly understood. Here, we decipher the molecular mechanisms underlying the rapid evolution in the expression of a gene involved in sex pheromone production in Drosophilid flies. Long-chain cuticular hydrocarbons (e.g., dienes) are produced female-specifically, notably via the activity of the desaturase DESAT-F, and are potent pheromones for male courtship behavior in Drosophila melanogaster. We show that across the genus Drosophila, the expression of this enzyme is correlated with long-chain diene production and has undergone an extraordinary number of evolutionary transitions, including six independent gene inactivations, three losses of expression without gene loss, and two transitions in sex-specificity. Furthermore, we show that evolutionary transitions from monomorphism to dimorphism (and its reversion) in desatF expression involved the gain (and the inactivation) of a binding-site for the sex-determination transcription factor, DOUBLESEX. In addition, we documented a surprising example of the gain of particular cis-regulatory motifs of the desatF locus via a set of small deletions. Together, our results suggest that frequent changes in the expression of pheromone-producing enzymes underlie evolutionary transitions in chemical communication, and reflect changing regimes of sexual selection, which may have contributed to speciation among Drosophila
    • …
    corecore