3,051 research outputs found
Results from the 4PI Effective Action in 2- and 3-dimensions
We consider a symmetric scalar theory with quartic coupling and solve the
equations of motion from the 4PI effective action in 2- and 3-dimensions using
an iterative numerical lattice method. For coupling less than 10 (in
dimensionless units) good convergence is obtained in less than 10 iterations.
We use lattice size up to 16 in 2-dimensions and 10 in 3-dimensions and
demonstrate the convergence of the results with increasing lattice size. The
self-consistent solutions for the 2-point and 4-point functions agree well with
the perturbative ones when the coupling is small and deviate when the coupling
is large.Comment: 14 pages, 11 figures; v5: added numerical calculations in 3D; version
accepted for publication in EPJ
KMS conditions for 4-point Green functions at finite temperature
We study the 4-point function in the Keldysh formalism of the closed time
path formulation of real time finite temperature field theory.
We derive the KMS conditions for these functions and discuss the number of
4-point functions that are independent. We define a set of `physical' functions
which are linear combinations of the usual Keldysh functions. We show that
these functions satisfy simple KMS conditions. In addition, we consider a set
of integral equations which represent a resummation of ladder graphs. We show
that these integral equations decouple when one uses the physical functions
that we have defined. We discuss the generalization of these results to QED.Comment: 17 pages in Revtex with 2 figure
Perturbative and Nonperturbative Kolmogorov Turbulence in a Gluon Plasma
In numerical simulations of nonabelian plasma instabilities in the hard-loop
approximation, a turbulent spectrum has been observed that is characterized by
a phase-space density of particles with exponent , which is larger than expected from relativistic
scatterings. Using the approach of Zakharov, L'vov and Falkovich, we analyse
possible Kolmogorov coefficients for relativistic -particle
processes, which give at most perturbatively for an energy cascade.
We discuss nonperturbative scenarios which lead to larger values. As an extreme
limit we find the result generically in an inherently nonperturbative
effective field theory situation, which coincides with results obtained by
Berges et al.\ in large- scalar field theory. If we instead assume that
scaling behavior is determined by Schwinger-Dyson resummations such that the
different scaling of bare and dressed vertices matters, we find that
intermediate values are possible. We present one simple scenario which would
single out .Comment: published versio
Spontaneous Symmetry Breaking for Scalar QED with Non-minimal Chern-Simons Coupling
We investigate the two-loop effective potential for both minimally and
non-minimally coupled Maxwell-Chern-Simons theories. The non-minimal gauge
interaction represents the magnetic moment interaction between a charged scalar
and the electromagnetic field. In a previous paper we have shown that the two
loop effective potential for this model is renormalizable with an appropriate
choice of the non-minimal coupling constant. We carry out a detailed analysis
of the spontaneous symmetry breaking induced by radiative corrections. As long
as the renormalization point for all couplings is chosen to be the true minimum
of the effective potential, both models predict the presence of spontaneous
symmetry breaking. Two loop corrections are small compared to the one loop
result, and thus the symmetry breaking is perturbatively stable.Comment: Revtex 25 pages, 9 figure
Heat Transport in a Strongly Overdoped Cuprate: Fermi Liquid and Pure d-wave BCS Superconductor
The transport of heat and charge in the overdoped cuprate superconductor
Tl_2Ba_2CuO_(6+delta) was measured down to low temperature. In the normal
state, obtained by applying a magnetic field greater than the upper critical
field, the Wiedemann-Franz law is verified to hold perfectly. In the
superconducting state, a large residual linear term is observed in the thermal
conductivity, in quantitative agreement with BCS theory for a d-wave
superconductor. This is compelling evidence that the electrons in overdoped
cuprates form a Fermi liquid, with no indication of spin-charge separation.Comment: 4 pages, 2 figures, published version, title changed, Phys. Rev.
Lett. 89, 147003 (2002
Ward Identities in Non-equilibrium QED
We verify the QED Ward identity for the two- and three -point functions at
non-equilibrium in the HTL limit. We use the Keldysh formalism of real time
finite temperature field theory. We obtain an identity of the same form as the
Ward identity for a set of one loop self-energy and one loop three-point vertex
diagrams which are constructed from HTL effective propagators and vertices.Comment: 19 pages, RevTex, 4 PostScript figures, revised version to be
published in Phys. Rev.
Preferential attachment of communities: the same principle, but a higher level
The graph of communities is a network emerging above the level of individual
nodes in the hierarchical organisation of a complex system. In this graph the
nodes correspond to communities (highly interconnected subgraphs, also called
modules or clusters), and the links refer to members shared by two communities.
Our analysis indicates that the development of this modular structure is driven
by preferential attachment, in complete analogy with the growth of the
underlying network of nodes. We study how the links between communities are
born in a growing co-authorship network, and introduce a simple model for the
dynamics of overlapping communities.Comment: 7 pages, 3 figure
2PI Effective Action and Evolution Equations of N = 4 super Yang-Mills
We employ nPI effective action techniques to study N = 4 super Yang-Mills,
and write down the 2PI effective action of the theory. We also supply the
evolution equations of two-point correlators within the theory.Comment: 16 pages, 6 figures. Figure 2 replaced, approximation scheme
clarified, references adde
Transport coefficients and ladder summation in hot gauge theories
We show how to compute transport coefficients in gauge theories by
considering the expansion of the Kubo formulas in terms of ladder diagrams in
the imaginary time formalism. All summations over Matsubara frequencies are
performed and the analytical continuation to get the retarded correlators is
done. As an illustration of the procedure, we present a derivation of the
transport equation for the shear viscosity in the scalar theory. Assuming the
Hard Thermal Loop approximation for the screening of distant collisions of the
hard particles in the plasma, we derive a couple of integral equations for the
effective vertices which, to logarithmic accuracy, are shown to be identical to
the linearized Boltzmann equations previously found by Arnold, Moore and Yaffe.Comment: 34 pages, 7 figures v2. Added discussion on box topologies for the
ladder rungs. Version to appear in Phys. Rev.
Evaluation of the two-photon absorption characteristics of GaSb/GaAs quantum rings
The optical parameters describing the sub-bandgap response of GaSb/GaAs quantum rings solar cells have been obtained from photocurrent measurements using a modulated pseudomonochromatic light source in combination with a second, continuous photo-filling source. By controlling the charge state of the quantum rings, the photoemission cross-sections describing the two-photon sub-bandgap transitions could be determined independently. Temperature dependent photo-response measurements also revealed that the barrier for thermal hole emission from the quantum rings is significantly below the quantum ring localisation energy. The temperature dependence of the sub-bandgap photo-response of the solar cell is also described in terms of the photo-and thermal-emission characteristics of the quantum rings. (C) 2014 AIP Publishing LLC
- …