13 research outputs found
Improving the agility of keyframe-based SLAM
Abstract. The ability to localise a camera moving in a previously unknown environment is desirable for a wide range of applications. In computer vision this problem is studied as monocular SLAM. Recent years have seen improvements to the usability and scalability of monocular SLAM systems to the point that they may soon find uses outside of laboratory conditions. However, the robustness of these systems to rapid camera motions (we refer to this quality as agility) still lags behind that of tracking systems which use known object models. In this paper we attempt to remedy this. We present two approaches to improving the agility of a keyframe-based SLAM system: Firstly, we add edge features to the map and exploit their resilience to motion blur to improve tracking under fast motion. Secondly, we implement a very simple inter-frame rotation estimator to aid tracking when the camera is rapidly panning – and demonstrate that this method also enables a trivially simple yet effective relocalisation method. Results show that a SLAM system combining points, edge features and motion initialisation allows highly agile tracking at a moderate increase in processing time.
Estimating Human Body Configurations using Shape Context Matching
The problem we consider in this paper is to take a single two-dimensional image containing a human body, locate the joint positions, and use these to estimate the body configuration and pose in three-dimensional space. The basic approach is to store a number of exemplar 2D views of the human body in a variety of different configurations and viewpoints with respect to the camera. On each of these stored views, the locations of the body joints (left elbow, right knee, etc.) are manually marked and labelled for future use. The test shape is then matched to each stored view, using the technique of shape context matching in conjunction with a kinematic chain-based deformation model. Assuming that there is a stored view sufficiently similar in configuration and pose, the correspondence process will succeed. The locations of the body joints are then transferred from the exemplar view to the test shape. Given the joint locations, the 3D body configuration and pose are then estimated