76 research outputs found

    Impact response of laminated cylindrical shells

    Get PDF
    Composite laminates subjected to low-velocity impact events on the through-thickness direction are conveniently studied and disseminated in the open literature. However, in terms of laminated cylindrical shells this subject is less common. Therefore, the main goal of the present work is to study the impact response of laminated composite cylindrical shells composed by different type of fibres. For this purpose, laminates with different configurations (6C, 2C+2K+2C and 2C+2G+2C), where the “number” represents the number of layers used and C=Carbon, K=Kevlar and G=Glass fibre layers, were analysed in terms of static and impact strength. It is possible to conclude that both static and impact performance are strongly influenced by the shells’ configuration. In terms of compressive static strength, the Kevlar hybrid shells present values 53.2% higher than the 6C shells, while the glass hybrid shells present values 17.3% lower. The impact analyses shows, regardless the similarity of the maximum loads for all configurations, that Kevlar hybrid shells achieved the highest elastic recuperation and the glass hybrid shells the maximum displacement

    Multiorder coherent Raman scattering of a quantum probe field

    Full text link
    We study the multiorder coherent Raman scattering of a quantum probe field in a far-off-resonance medium with a prepared coherence. Under the conditions of negligible dispersion and limited bandwidth, we derive a Bessel-function solution for the sideband field operators. We analytically and numerically calculate various quantum statistical characteristics of the sideband fields. We show that the multiorder coherent Raman process can replicate the statistical properties of a single-mode quantum probe field into a broad comb of generated Raman sidebands. We also study the mixing and modulation of photon statistical properties in the case of two-mode input. We show that the prepared Raman coherence and the medium length can be used as control parameters to switch a sideband field from one type of photon statistics to another type, or from a non-squeezed state to a squeezed state and vice versa.Comment: 12 pages, 7 figures, to be published in Phys. Rev.
    corecore