32 research outputs found
Asymptotic safety of simple Yukawa systems
We study the triviality and hierarchy problem of a Z_2-invariant Yukawa
system with massless fermions and a real scalar field, serving as a toy model
for the standard-model Higgs sector. Using the functional RG, we look for UV
stable fixed points which could render the system asymptotically safe. Whether
a balancing of fermionic and bosonic contributions in the RG flow induces such
a fixed point depends on the algebraic structure and the degrees of freedom of
the system. Within the region of parameter space which can be controlled by a
nonperturbative next-to-leading order derivative expansion of the effective
action, we find no non-Gaussian fixed point in the case of one or more fermion
flavors. The fermion-boson balancing can still be demonstrated within a model
system with a small fractional flavor number in the symmetry-broken regime. The
UV behavior of this small-N_f system is controlled by a conformal Higgs
expectation value. The system has only two physical parameters, implying that
the Higgs mass can be predicted. It also naturally explains the heavy mass of
the top quark, since there are no RG trajectories connecting the UV fixed point
with light top masses.Comment: 14 pages, 3 figures, v2: references added, typos corrected, minor
numerical correction