242 research outputs found

    In Vivo Imaging of Protein-Protein Interactions

    Get PDF

    Anatomical and molecular imaging of skin cancer

    Get PDF
    Skin cancer is the most common form of cancer types. It is generally divided into two categories: melanoma (∼ 5%) and nonmelanoma (∼ 95%), which can be further categorized into basal cell carcinoma, squamous cell carcinoma, and some rare skin cancer types. Biopsy is still the gold standard for skin cancer evaluation in the clinic. Various anatomical imaging techniques have been used to evaluate different types of skin cancer lesions, including laser scanning confocal microscopy, optical coherence tomography, high-frequency ultrasound, terahertz pulsed imaging, magnetic resonance imaging, and some other recently developed techniques such as photoacoustic microscopy. However, anatomical imaging alone may not be sufficient in guiding skin cancer diagnosis and therapy. Over the last decade, various molecular imaging techniques (in particular single photon emission computed tomography and positron emission tomography) have been investigated for skin cancer imaging. The pathways or molecular targets that have been studied include glucose metabolism, integrin αvβ3, melanocortin-1 receptor, high molecular weight melanoma-associated antigen, and several other molecular markers. Preclinical molecular imaging is thriving all over the world, while clinical molecular imaging has not lived up to the expectations because of slow bench-to-bedside translation. It is likely that this situation will change in the near future and molecular imaging will truly play an important role in personalized medicine of melanoma patients

    Radionuclide-Based Cancer Imaging Targeting the Carcinoembryonic Antigen

    Get PDF
    Carcinoembryonic antigen (CEA), highly expressed in many cancer types, is an important target for cancer diagnosis and therapy. Radionuclide-based imaging techniques (gamma camera, single photon emission computed tomography [SPECT] and positron emission tomography [PET]) have been extensively explored for CEA-targeted cancer imaging both preclinically and clinically. Briefly, these studies can be divided into three major categories: antibody-based, antibody fragment-based and pretargeted imaging. Radiolabeled anti-CEA antibodies, reported the earliest among the three categories, typically gave suboptimal tumor contrast due to the prolonged circulation life time of intact antibodies. Subsequently, a number of engineered anti-CEA antibody fragments (e.g. Fab’, scFv, minibody, diabody and scFv-Fc) have been labeled with a variety of radioisotopes for CEA imaging, many of which have entered clinical investigation. CEA-Scan (a 99mTc-labeled anti-CEA Fab’ fragment) has already been approved by the United States Food and Drug Administration for cancer imaging. Meanwhile, pretargeting strategies have also been developed for CEA imaging which can give much better tumor contrast than the other two methods, if the system is designed properly. In this review article, we will summarize the current state-of-the-art of radionuclide-based cancer imaging targeting CEA. Generally, isotopes with short half-lives (e.g. 18F and 99mTc) are more suitable for labeling small engineered antibody fragments while the isotopes with longer half-lives (e.g. 123I and 111In) are needed for antibody labeling to match its relatively long circulation half-life. With further improvement in tumor targeting efficacy and radiolabeling strategies, novel CEA-targeted agents may play an important role in cancer patient management, paving the way to “personalized medicine”

    Are quantum dots ready for in vivo imaging in human subjects?

    Get PDF
    Nanotechnology has the potential to profoundly transform the nature of cancer diagnosis and cancer patient management in the future. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology. QDs are fluorescent semiconductor nanoparticles suitable for multiplexed in vitro and in vivo imaging. Numerous studies on QDs have resulted in major advancements in QD surface modification, coating, biocompatibility, sensitivity, multiplexing, targeting specificity, as well as important findings regarding toxicity and applicability. For in vitro applications, QDs can be used in place of traditional organic fluorescent dyes in virtually any system, outperforming organic dyes in the majority of cases. In vivo targeted tumor imaging with biocompatible QDs has recently become possible in mouse models. With new advances in QD technology such as bioluminescence resonance energy transfer, synthesis of smaller size non-Cd based QDs, improved surface coating and conjugation, and multifunctional probes for multimodality imaging, it is likely that human applications of QDs will soon be possible in a clinical setting

    In Vivo Imaging of Inflammation and Infection

    Get PDF

    Intrathermocline eddies observed in the northwestern subtropical Pacific Ocean

    Get PDF
    Two anticyclonic intrathermocline eddies (ITEs) were detected by an underwater glider in the northwestern subtropical Pacific Ocean during August-October 2019. They both exhibited a lens-shaped vertical structure within the thermocline with their cores located at ~170 m. The North Pacific Subtropical Mode Water (STMW) was found within the cores of these two ITEs. The lens-shaped structure of ITE1 observed by the glider was very clear since the glider seemed to have moved into its core during the observation. Further analysis reveals that ITE1 displayed no signals at the sea surface and lasted for about 20 days (26 August-14 September 2019). ITE1 was locally formed and the water inside it was a mixture of local water and the water in the northern adjacent area. The low-salinity water at 0-50 m from the northern adjacent area extended southwestward and mixed with the local water. As a result, the local salinity-forced restratification caused a potential vorticity (PV) decrease in the subsurface and finally resulted in the generation of ITE1. The baroclinic instability at 50-170 m may be the main energy source for ITE1 generation. On the other hand, the lens-shaped structure of ITE2 observed by the glider was less prominent since the glider did not move into its core. Further analysis reveals that the lens-shaped structure of ITE2 was also very clear near its core and ITE2 displayed clear signals at the surface as an anticyclonic eddy (AE2). AE2/ITE2 was remotely generated within the main formation region of STMW and then moved southwestward. The low PV STMW was trapped in AE2 and a lens-shaped structure developed in the subsurface. Subduction of the STMW caused the generation of ITE2

    Evolution of zinc oxide nanostructures through kinetics control †

    Get PDF
    In-depth understanding of the kinetics of the vapor deposition process is substantial for advancing this capable bottom-up nanostructure synthesis approach into a versatile large-scale nanomanufacturing technology. In this paper, we report a systematic study of the vapor deposition kinetics of ZnO nanomaterials under controlled atmosphere and properly refined deposition conditions. The experiments clearly evidenced the self-catalyzed growth of ZnO NWs via the formation of ZnO nanoflowers. This result illustrated how ZnO morphologies were associated with the discrepancy between oxidation rate and condensation rate of Zn. The capability of switching the NW morphologies and possibly mechanisms was demonstrated by kinetically controlling the deposition system. The high Zn composition during the deposition resulted in strongly luminescent NWs, which can be used for optical imaging applications. This research discovered a fundamental kinetics that governs the mechanisms and morphology selection of nanostructures in a non-catalyst growth system

    Coherent manipulation of nitrogen vacancy centers in 4H silicon carbide with resonant excitation

    Full text link
    Silicon carbide (SiC) has become a key player in realization of scalable quantum technologies due to its ability to host optically addressable spin qubits and wafer-size samples. Here, we have demonstrated optically detected magnetic resonance (ODMR) with resonant excitation, and clearly identified the ground state energy levels of the NV centers in 4H-SiC. Coherent manipulation of NV centers in SiC has been achieved with Rabi and Ramsey oscillations. Finally, we show the successful generation and characterization of single nitrogen vacancy (NV) center in SiC employing ion implantation. Our results are highlighting the key role of NV centers in SiC as a potential candidate for quantum information processing
    corecore