11 research outputs found
Adaptive magnetic resonance image guided radiation for intact localized prostate cancer how to optimally test a rapidly emerging technology.
Introduction: Prostate cancer is a common malignancy for which radiation therapy (RT) provides an excellent management option with high rates of control and low toxicity. Historically RT has been given with CT based image guidance. Recently, magnetic resonance (MR) imaging capabilities have been successfully integrated with RT delivery platforms, presenting an appealing, yet complex, expensive, and time-consuming method of adapting and guiding RT. The precise benefits of MR guidance for localized prostate cancer are unclear. We sought to summarize optimal strategies to test the benefits of MR guidance specifically in localized prostate cancer. Methods: A group of radiation oncologists, physicists, and statisticians were identified to collectively address this topic. Participants had a history of treating prostate cancer patients with the two commercially available MRI-guided RT devices. Participants also had a clinical focus on randomized trials in localized prostate cancer. The goal was to review both ongoing trials and present a conceptual focus on MRI-guided RT specifically in the definitive treatment of prostate cancer, along with developing and proposing novel trials for future consideration. Trial hypotheses, endpoints, and areas for improvement in localized prostate cancer that specifically leverage MR guided technology are presented. Results: Multiple prospective trials were found that explored the potential of adaptive MRI-guided radiotherapy in the definitive treatment of prostate cancer. Different primary areas of improvement that MR guidance may offer in prostate cancer were summarized. Eight clinical trial design strategies are presented that summarize options for clinical trials testing the potential benefits of MRI-guided RT. Conclusions: The number and scope of trials evaluating MRI-guided RT for localized prostate cancer is limited. Yet multiple promising opportunities to test this technology and potentially improve outcomes for men with prostate cancer undergoing definitive RT exist. Attention, in the form of multi-institutional randomized trials, is needed
NRG Oncology Updated International Consensus Atlas on Pelvic Lymph Node Volumes for Intact and Postoperative Prostate Cancer.
PURPOSE: In 2009, the Radiation Therapy Oncology Group (RTOG) genitourinary members published a consensus atlas for contouring prostate pelvic nodal clinical target volumes (CTVs). Data have emerged further informing nodal recurrence patterns. The objective of this study is to provide an updated prostate pelvic nodal consensus atlas. METHODS AND MATERIALS: A literature review was performed abstracting data on nodal recurrence patterns. Data were presented to a panel of international experts, including radiation oncologists, radiologists, and urologists. After data review, participants contoured nodal CTVs on 3 cases: postoperative, intact node positive, and intact node negative. Radiation oncologist contours were analyzed qualitatively using count maps, which provided a visual assessment of controversial regions, and quantitatively analyzed using Sorensen-Dice similarity coefficients and Hausdorff distances compared with the 2009 RTOG atlas. Diagnostic radiologists generated a reference table outlining considerations for determining clinical node positivity. RESULTS: Eighteen radiation oncologists' contours (54 CTVs) were included. Two urologists' volumes were examined in a separate analysis. The mean CTV for the postoperative case was 302 cm3, intact node positive case was 409 cm3, and intact node negative case was 342 cm3. Compared with the original RTOG consensus, the mean Sorensen-Dice similarity coefficient for the postoperative case was 0.63 (standard deviation [SD] 0.13), the intact node positive case was 0.68 (SD 0.13), and the intact node negative case was 0.66 (SD 0.18). The mean Hausdorff distance (in cm) for the postoperative case was 0.24 (SD 0.13), the intact node positive case was 0.23 (SD 0.09), and intact node negative case was 0.33 (SD 0.24). Four regions of CTV controversy were identified, and consensus for each of these areas was reached. CONCLUSIONS: Discordance with the 2009 RTOG consensus atlas was seen in a group of experienced NRG Oncology and international genitourinary radiation oncologists. To address areas of variability and account for new data, an updated NRG Oncology consensus contour atlas was developed