44 research outputs found

    Apical and basolateral localisation of GLUT2 transporters in human lung epithelial cells

    Get PDF
    Glucose concentrations of normal human airway surface liquid are ~12.5 times lower than blood glucose concentrations indicating that glucose uptake by epithelial cells may play a role in maintaining lung glucose homeostasis. We have therefore investigated potential glucose uptake mechanisms in non-polarised and polarised H441 human airway epithelial cells and bronchial biopsies. We detected mRNA and protein for glucose transporter type 2 (GLUT2) and glucose transporter type 4 (GLUT4) in non-polarised cells but GLUT4 was not detected in the plasma membrane. In polarised cells, GLUT2 protein was detected in both apical and basolateral membranes. Furthermore, GLUT2 protein was localised to epithelial cells of human bronchial mucosa biopsies. In non-polarised H441 cells, uptake of d-glucose and deoxyglucose was similar. Uptake of both was inhibited by phloretin indicating that glucose uptake was via GLUT-mediated transport. Phloretin-sensitive transport remained the predominant route for glucose uptake across apical and basolateral membranes of polarised cells and was maximal at 5–10 mM glucose. We could not conclusively demonstrate sodium/glucose transporter-mediated transport in non-polarised or polarised cells. Our study provides the first evidence that glucose transport in human airway epithelial cells in vitro and in vivo utilises GLUT2 transporters. We speculate that these transporters could contribute to glucose uptake/homeostasis in the human airway

    Rapid diagnosis and quantification of acute kidney injury using fluorescent ratio-metric determination of glomerular filtration rate in the rat

    No full text
    The rapid diagnosis and quantification of acute kidney injury (AKI) severity remain high clinical priorities. By combining intravital fluorescent ratiometric two-photon kidney imaging and the two-compartment pharmacokinetics model, we demonstrate that rapid quantification of glomerular filtration rate (GFR) can be achieved in physiologic and AKI rat kidney models. Using a bolus infusion of a mixture of FITC-inulin and a 500-kDa Texas Red dextran, a full spectrum of GFR values, ranging from 0.17 to 1.12 ml·min−1·100 g−1, was obtained. The GFR values thus determined correlated well with values obtained by the standard 2-h inulin infusion clearance method with a Pearson's correlation coefficient of 0.85. In addition, postischemia deterioration was studied by measuring GFR using the two-photon approach during 24 h following a 45-min bilateral ischemia clamp model. The GFR was found to decline sharply during the initial 4 h followed by a nadir with little sign of rising over the ensuing 24-h period. Moreover, a FITC-labeled 5-kDa dextran was identified as having nearly identical filtration characteristics as FITC-inulin, but had markedly increased fluorescent intensity, thus minimizing the quantity needed for individual studies. The technique reported allows for very rapid GFR determinations, within 10–15 min, based on plasma clearance of a freely filtered fluorescence probe, instead of a prolonged one-compartment interstitial space reporter molecule clearance employed by other technologies

    Simulation of animal cell metabolism

    No full text
    corecore