2,456 research outputs found

    Pathogen burden, inflammation, proliferation and apoptosis in human in-stent restenosis - Tissue characteristics compared to primary atherosclerosis

    Get PDF
    Pathogenic events leading to in-stent restenosis (ISR) are still incompletely understood. Among others, inflammation, immune reactions, deregulated cell death and growth have been suggested. Therefore, atherectomy probes from 21 patients with symptomatic ISR were analyzed by immunohistochemistry for pathogen burden and compared to primary target lesions from 20 stable angina patients. While cytomegalovirus, herpes simplex virus, Epstein-Barr virus and Helicobacter pylori were not found in ISR, acute and/or persistent chlamydial infection were present in 6/21 of these lesions (29%). Expression of human heat shock protein 60 was found in 8/21 of probes (38%). Indicated by distinct signals of CD68, CD40 and CRP, inflammation was present in 5/21 (24%), 3/21 (14%) and 2/21 (10%) of ISR cases. Cell density of ISR was significantly higher than that of primary lesions ( 977 +/- 315 vs. 431 +/- 148 cells/mm(2); p < 0.001). There was no replicating cell as shown by Ki67 or PCNA. TUNEL+ cells indicating apoptosis were seen in 6/21 of ISR specimens (29%). Quantitative analysis revealed lower expression levels for each intimal determinant in ISR compared to primary atheroma (all p < 0.05). In summary, human ISR at the time of clinical presentation is characterized by low frequency of pathogen burden and inflammation, but pronounced hypercellularity, low apoptosis and absence of proliferation. Copyright (C) 2004 S. Karger AG, Basel

    Attenuation of leukocyte sequestration by selective blockade of PECAM-1 or VCAM-1 in murine endotoxemia

    Get PDF
    Background: Molecular mechanisms regulating leukocyte sequestration into the tissue during endotoxemia and/or sepsis are still poorly understood. This in vivo study investigates the biological role of murine PECAM-1 and VCAM-1 for leukocyte sequestration into the lung, liver and striated skin muscle. Methods: Male BALB/c mice were injected intravenously with murine PECAM-1 IgG chimera or monoclonal antibody (mAb) to VCAM-1 ( 3 mg/kg body weight); controls received equivalent doses of IgG2a ( n = 6 per group). Fifteen minutes thereafter, 2 mg/kg body weight of Salmonella abortus equi endotoxin was injected intravenously. At 24 h after the endotoxin challenge, lungs, livers and striated muscle of skin were analyzed for their myeloperoxidase activity. To monitor intravital leukocyte-endothelial cell interactions, fluorescence videomicroscopy was performed in the skin fold chamber model of the BALB/c mouse at 3, 8 and 24 h after injection of endotoxin. Results: Myeloperoxidase activity at 24 h after the endotoxin challenge in lungs (12,171 +/- 2,357 mU/g tissue), livers ( 2,204 +/- 238 mU/g) and striated muscle of the skin ( 1,161 +/- 110 mU/g) was significantly reduced in both treatment groups as compared to controls, with strongest attenuation in the PECAM-1 IgG treatment group. Arteriolar leukocyte sticking at 3 h after endotoxin (230 +/- 46 cells x mm(-2)) was significantly reduced in both treatment groups. Leukocyte sticking in postcapillary venules at 8 h after endotoxin ( 343 +/- 69 cells/mm(2)) was found reduced only in the VCAM-1-mAb-treated animals ( 215 +/- 53 cells/mm(2)), while it was enhanced in animals treated with PECAM-1 IgG ( 572 +/- 126 cells/mm(2)). Conclusion: These data show that both PECAM-1 and VCAM-1 are involved in endotoxin-induced leukocyte sequestration in the lung, liver and muscle, presumably through interference with arteriolar and/or venular leukocyte sticking. Copyright (C) 2004 S. Karger AG, Basel

    Observation of anomalous decoherence effect in a quantum bath at room temperature

    Get PDF
    Decoherence of quantum objects is critical to modern quantum sciences and technologies. It is generally believed that stronger noises cause faster decoherence. Strikingly, recent theoretical research discovers the opposite case for spins in quantum baths. Here we report experimental observation of the anomalous decoherence effect for the electron spin-1 of a nitrogen-vacancy centre in high-purity diamond at room temperature. We demonstrate that under dynamical decoupling, the double-transition can have longer coherence time than the single-transition, even though the former couples to the nuclear spin bath as twice strongly as the latter does. The excellent agreement between the experimental and the theoretical results confirms the controllability of the weakly coupled nuclear spins in the bath, which is useful in quantum information processing and quantum metrology.Comment: 22 pages, related paper at http://arxiv.org/abs/1102.557

    Topological Quantum Glassiness

    Full text link
    Quantum tunneling often allows pathways to relaxation past energy barriers which are otherwise hard to overcome classically at low temperatures. However, this is not always the case. In this paper we provide simple exactly solvable examples where the barriers each system encounters on its approach to lower and lower energy states become increasingly large and eventually scale with the system size. If the environment couples locally to the physical degrees of freedom in the system, tunnelling under large barriers requires processes whose order in perturbation theory is proportional to the width of the barrier. This results in quantum relaxation rates that are exponentially suppressed in system size: For these quantum systems, no physical bath can provide a mechanism for relaxation that is not dynamically arrested at low temperatures. The examples discussed here are drawn from three dimensional generalizations of Kitaev's toric code, originally devised in the context of topological quantum computing. They are devoid of any local order parameters or symmetry breaking and are thus examples of topological quantum glasses. We construct systems that have slow dynamics similar to either strong or fragile glasses. The example with fragile-like relaxation is interesting in that the topological defects are neither open strings or regular open membranes, but fractal objects with dimension d=ln3/ln2d^* = ln 3/ ln 2.Comment: (18 pages, 4 figures, v2: typos and updated figure); Philosophical Magazine (2011

    Somatic VHL gene alterations in MEN2-associated medullary thyroid carcinoma

    Get PDF
    BACKGROUND: Germline mutations in RET are responsible for multiple endocrine neoplasia type 2 (MEN2), an autosomal dominantly inherited cancer syndrome that is characterized by medullary thyroid carcinoma (MTC), pheochromocytoma, and parathyroid hyperplasia/adenoma. Recent studies suggest a "second hit" mechanism resulting in amplification of mutant RET. Somatic VHL gene alterations are implicated in the pathogenesis of MEN2 pheochromocytomas. We hypothesized that somatic VHL gene alterations are also important in the pathogenesis of MEN2-associated MTC. METHODS: We analyzed 6 MTCs and 1 C-cell hyperplasia (CCH) specimen from 7 patients with MEN2A and RET germline mutations in codons 609, 618, 620, or 634, using microdissection, microsatellite analysis, phosphorimage densitometry, and VHL mutation analysis. RESULTS: First, we searched for allelic imbalance between mutant and wild-type RET by using the polymorphic markers D10S677, D10S1239, and RET on thyroid tissue from these patients. Evidence for RET amplification by this technique could be demonstrated in 3 of 6 MTCs. We then performed LOH analysis using D3S1038 and D3S1110 which map to the VHL gene locus at 3p25/26. VHL gene deletion was present in 3 MTCs. These 3 MTCs also had an allelic imbalance between mutant and wild-type RET. Mutation analysis of the VHL gene showed a somatic frameshift mutation in 1 MTC that also demonstrated LOH at 3p25/26. In the 2 other MTCs with allelic imbalance of RET and somatic VHL gene deletion, no somatic VHL mutation could be detected. The CCH specimen did neither reveal RET imbalance nor somatic VHL gene alterations. CONCLUSION: These data suggest that a RET germline mutation is necessary for development of CCH, that allelic imbalance between mutant and wild-type RET may set off tumorigenesis, and that somatic VHL gene alterations may not play a major role in tumorigenesis of MEN2A-associated MTC

    Decoherence-protected quantum gates for a hybrid solid-state spin register

    Full text link
    Protecting the dynamics of coupled quantum systems from decoherence by the environment is a key challenge for solid-state quantum information processing. An idle qubit can be efficiently insulated from the outside world via dynamical decoupling, as has recently been demonstrated for individual solid-state qubits. However, protection of qubit coherence during a multi-qubit gate poses a non-trivial problem: in general the decoupling disrupts the inter-qubit dynamics, and hence conflicts with gate operation. This problem is particularly salient for hybrid systems, wherein different types of qubits evolve and decohere at vastly different rates. Here we present the integration of dynamical decoupling into quantum gates for a paradigmatic hybrid system, the electron-nuclear spin register. Our design harnesses the internal resonance in the coupled-spin system to resolve the conflict between gate operation and decoupling. We experimentally demonstrate these gates on a two-qubit register in diamond operating at room temperature. Quantum tomography reveals that the qubits involved in the gate operation are protected as accurately as idle qubits. We further illustrate the power of our design by executing Grover's quantum search algorithm, achieving fidelities above 90% even though the execution time exceeds the electron spin dephasing time by two orders of magnitude. Our results directly enable decoherence-protected interface gates between different types of promising solid-state qubits. Ultimately, quantum gates with integrated decoupling may enable reaching the accuracy threshold for fault-tolerant quantum information processing with solid-state devices.Comment: This is original submitted version of the paper. The revised and finalized version is in print, and is subjected to the embargo and other editorial restrictions of the Nature journa

    Yes, I Am Ready Now: Differential Effects of Paced versus Unpaced Mating on Anxiety and Central Oxytocin Release in Female Rats

    Get PDF
    Sexual activity and partner intimacy results in several positive consequences in the context of stress-coping, both in males and females, such as reduced state anxiety in male rats after successful mating. However, in female rats, mating is a rewarding experience only when the estrous female is able to control sexual interactions, i.e., under paced-mating conditions. Here, we demonstrate that sex-steroid priming required for female mating is anxiolytic; subsequent sexual activity under paced mating conditions did not disrupt this anxiolytic priming effect, whereas mating under unpaced conditions increased anxiety-related behavior. In primed females, the release of the neuropeptide oxytocin (OT) within the hypothalamic paraventricular nucleus was found to be elevated and to further increase during paced, but not unpaced mating. Central administration of an OT receptor antagonist partly prevented priming/mating-induced anxiolysis indicating the involvement of brain OT in the anxiolysis triggered by priming and/or sexual activity

    HEE-GER: a systematic review of German economic evaluations of health care published 1990–2004

    Get PDF
    BACKGROUND: Studies published in non-English languages are systematically missing in systematic reviews of growth and quality of economic evaluations of health care. The aims of this study were: to characterize German evaluations, published in English or German-language, in terms of various key parameters; to investigate methods to derive quality-of-life weights in cost-utility studies; and to examine changes in study characteristics over the years. METHODS: We conducted a country-specific systematic review of the German and English-language literature of German economic evaluations (assessment of or application to the German health care system) published 1990–2004. Generic and specialized health economic databases were searched. Two independent reviewers verified fulfillment of inclusion criteria and extracted study characteristics. RESULTS: The fulltexts of 730 articles were reviewed of which 283 fulfilled all entry criteria. 32% of included studies were published in German-language. 51% of studies evaluated pharmaceuticals and 63% were cost-effectiveness analyses. Economic appraisals concentrate on few disease categories and important health areas are strongly underrepresented. Declaration of sponsorship was associated with article language (49% English articles vs. 29% German articles, p < 0.001). The methodology used to obtain quality-of-life weights in published cost-utility studies was very diverse, poorly reported and most studies did not use German patients' or community health state valuations. CONCLUSION: Many of the German-language evaluations included in our study are likely to be missing in international reviews and may be systematically different from English-language reviews from Germany. Lack of transparency and adherence to recommended reporting practices constitute a serious problem in German economic evaluations

    Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host

    Get PDF
    Schmallenberg virus (SBV) is an emerging orthobunyavirus of ruminants associated with outbreaks of congenital malformations in aborted and stillborn animals. Since its discovery in November 2011, SBV has spread very rapidly to many European countries. Here, we developed molecular and serological tools, and an experimental in vivo model as a platform to study SBV pathogenesis, tropism and virus-host cell interactions. Using a synthetic biology approach, we developed a reverse genetics system for the rapid rescue and genetic manipulation of SBV. We showed that SBV has a wide tropism in cell culture and “synthetic” SBV replicates in vitro as efficiently as wild type virus. We developed an experimental mouse model to study SBV infection and showed that this virus replicates abundantly in neurons where it causes cerebral malacia and vacuolation of the cerebral cortex. These virus-induced acute lesions are useful in understanding the progression from vacuolation to porencephaly and extensive tissue destruction, often observed in aborted lambs and calves in naturally occurring Schmallenberg cases. Indeed, we detected high levels of SBV antigens in the neurons of the gray matter of brain and spinal cord of naturally affected lambs and calves, suggesting that muscular hypoplasia observed in SBV-infected lambs is mostly secondary to central nervous system damage. Finally, we investigated the molecular determinants of SBV virulence. Interestingly, we found a biological SBV clone that after passage in cell culture displays increased virulence in mice. We also found that a SBV deletion mutant of the non-structural NSs protein (SBVΔNSs) is less virulent in mice than wild type SBV. Attenuation of SBV virulence depends on the inability of SBVΔNSs to block IFN synthesis in virus infected cells. In conclusion, this work provides a useful experimental framework to study the biology and pathogenesis of SBV

    Quantum Computing

    Full text link
    Quantum mechanics---the theory describing the fundamental workings of nature---is famously counterintuitive: it predicts that a particle can be in two places at the same time, and that two remote particles can be inextricably and instantaneously linked. These predictions have been the topic of intense metaphysical debate ever since the theory's inception early last century. However, supreme predictive power combined with direct experimental observation of some of these unusual phenomena leave little doubt as to its fundamental correctness. In fact, without quantum mechanics we could not explain the workings of a laser, nor indeed how a fridge magnet operates. Over the last several decades quantum information science has emerged to seek answers to the question: can we gain some advantage by storing, transmitting and processing information encoded in systems that exhibit these unique quantum properties? Today it is understood that the answer is yes. Many research groups around the world are working towards one of the most ambitious goals humankind has ever embarked upon: a quantum computer that promises to exponentially improve computational power for particular tasks. A number of physical systems, spanning much of modern physics, are being developed for this task---ranging from single particles of light to superconducting circuits---and it is not yet clear which, if any, will ultimately prove successful. Here we describe the latest developments for each of the leading approaches and explain what the major challenges are for the future.Comment: 26 pages, 7 figures, 291 references. Early draft of Nature 464, 45-53 (4 March 2010). Published version is more up-to-date and has several corrections, but is half the length with far fewer reference
    corecore