22 research outputs found

    Understanding phosphorus mobility and bioavailability in the hyporheic zone of a chalk stream

    No full text
    This paper investigates the changes in bioavailable phosphorus (P) within the hyporheic zone of a groundwater-dominated chalk stream. In this study, tangential flow fractionation is used to investigate P associations with different size fractions in the hyporheic zone, groundwater and surface water. P speciation is similar for the river and the chalk aquifer beneath the hyporheic zone, with ‘dissolved’ P (<10 kDa) accounting for ~90% of the P in the river and >90% in the deep groundwaters. Within the hyporheic zone, the proportion of ‘colloidal’ (10 kDa) and ‘particulate’ (>0.45 μm) P is higher than in either the groundwater or the surface water, accounting for ~30% of total P. Our results suggest that zones of interaction within the sand and gravel deposits directly beneath and adjacent to river systems generate colloidal and particulate forms of fulvic-like organic material and regulate bioavailable forms of P, perhaps through coprecipitation with CaCO3. While chalk aquifers provide some degree of protection to surface water ecosystems through physiochemical processes of P removal, where flow is maintained by groundwater, ecologically significant P concentrations (20–30 μg/L) are still present in the groundwater and are an important source of bioavailable P during baseflow conditions. The nutrient storage capacity of the hyporheic zone and the water residence times of this dynamic system are largel
    corecore