60 research outputs found

    Influence of temperature and applied potential on the permeability of polyphenol films prepared on vitreous carbon in acid and alkaline media

    Get PDF
    The electrochemical polymerization of phenol is known to rapidly produce a thin insulating film at the anode surface. This film generally blocks further polymerization. The objective of this study is to show that, depending on the operating conditions, polymeric films resulting from phenol oxidation present different properties and that certain films can be so porous that they allow the oxidation of phenol to continue. The deposition of polyphenol films with improved permeability could be attractive in the removal of phenol from polluted solutions. Polyphenol films were prepared in aqueous solution on a vitreous carbon anode either by cyclic voltammetry or by electro-oxidation at constant potential. The apparent permeability P (%) of the films prepared by these techniques was evaluated by monitoring changes in the electrode response towards phenol and potassium ferricyanide at 25 and 85°C and as a function of the potential applied during electropolymerization performed either in acidic (1 mol L-¹H₂SO₄) or in alkaline (1 mol L-¹ NaOH) aqueous solution. It was shown that: (1) the polyphenol film electrosynthesized in alkaline medium was more permeable than that prepared in acidic medium, (2) the apparent permeability was higher when the polyphenol film was electrosynthesized with simultaneous oxygen evolution and (3) the use of a high temperature in the polyphenol film preparation, especially in the presence of a concomitant oxygen evolution, significantly enhanced its apparent permeability (P ≥ 100 %). These results are interpreted in terms of a mixed-transport mechanism involving both pore and membrane diffusion. The effect of the permeability of the polymeric film on the removal of phenol from aqueous solution by electropolymerization is discussed

    Influence of temperature and applied potential on the permeability of polyphenol films prepared on vitreous carbon in acid and alkaline media

    Get PDF
    The electrochemical polymerization of phenol is known to rapidly produce a thin insulating film at the anode surface. This film generally blocks further polymerization. The objective of this study is to show that, depending on the operating conditions, polymeric films resulting from phenol oxidation present different properties and that certain films can be so porous that they allow the oxidation of phenol to continue. The deposition of polyphenol films with improved permeability could be attractive in the removal of phenol from polluted solutions. Polyphenol films were prepared in aqueous solution on a vitreous carbon anode either by cyclic voltammetry or by electro-oxidation at constant potential. The apparent permeability P (%) of the films prepared by these techniques was evaluated by monitoring changes in the electrode response towards phenol and potassium ferricyanide at 25 and 85°C and as a function of the potential applied during electropolymerization performed either in acidic (1 mol L-¹H₂SO₄) or in alkaline (1 mol L-¹ NaOH) aqueous solution. It was shown that: (1) the polyphenol film electrosynthesized in alkaline medium was more permeable than that prepared in acidic medium, (2) the apparent permeability was higher when the polyphenol film was electrosynthesized with simultaneous oxygen evolution and (3) the use of a high temperature in the polyphenol film preparation, especially in the presence of a concomitant oxygen evolution, significantly enhanced its apparent permeability (P ≥ 100 %). These results are interpreted in terms of a mixed-transport mechanism involving both pore and membrane diffusion. The effect of the permeability of the polymeric film on the removal of phenol from aqueous solution by electropolymerization is discussed

    A Boron-Doped Diamond Anode for the Electrochemical Removal of Parabens in Low-Conductive Solution: From a Conventional Flow Cell to a Solid Polymer Electrolyte System

    No full text
    Solution conductivity plays a fundamental role for the employment of electrochemical advanced oxidation processes (EAOPs) and in the determination of their energy consumption. In this paper, a conventional flow cell based on BDD anode, which requires the addition of supporting electrolyte, is compared with a cell setup based on solid polymer electrolyte (SPE). The new cell configuration avoids the addition of salt to increase solution conductivity. The two systems performance are compared for treatment of different solutions containing methylparaben, ethylparaben and propylparaben. Both systems are able to remove all the three parabens, but the SPE- system provided a better performance, with a maximum COD removal of 91% and energy consumption of 16.25 kWh m-3 while the conventional one remove a maximum of 81% consuming 10.92 kWh m-3. The influence of parameters such as current density, flow conditions and supporting electrolyte concentration was analyzed, and results confirming that SPE-system is a promising system to treat low conductive solutions polluted by parabens
    • …
    corecore