8,965 research outputs found

    Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production

    Get PDF
    Heat shock protein 10 (Hsp10) and heat shock protein 160 (Hsp60) were originally described as essential mitochondrial proteins involved in protein folding. How,ever, both proteins have also been shown to have a number of extracellular immunomodulatory activities. Here we show that purified recombinant human Hsp10 incubated with cells in vitro reduced lipopolysaccharide (LPS)-induced nuclear factor-kappaB activation and secretion of several inflammatory mediators from RAW264.7 cells, murine macrophages, and human peripheral blood mononuclear cells. Induction of tolerance by contaminating LPS was formally excluded as being responsible for Hsp10 activity. Treatment of mice with Hsp10 before,endotoxin challenge resulted in the reduction of serum tumor necrosis factor-a and RANTES (regulated upon activation, normal T cell expressed and secreted) levels and an elevation of serum interleukin-10 levels. Hsp10 treatment also delayed mortality in a murine graft-ver-sus-host disease model, where gut-derived LPS contributes to pathology. We were unable to confirm previous reports that Hsp10 has tumor growth factor properties and suggest that Hsp10 exerts anti-inflammatory activity by inhibiting Toll-like receptor signaling possibly by interacting with extracellular Hsp60

    Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors

    Full text link
    We consider two dimensional maps preserving a foliation which is uniformly contracting and a one dimensional associated quotient map having exponential convergence to equilibrium (iterates of Lebesgue measure converge exponentially fast to physical measure). We prove that these maps have exponential decay of correlations over a large class of observables. We use this result to deduce exponential decay of correlations for the Poincare maps of a large class of singular hyperbolic flows. From this we deduce logarithm laws for these flows.Comment: 39 pages; 03 figures; proof of Theorem 1 corrected; many typos corrected; improvements on the statements and comments suggested by a referee. Keywords: singular flows, singular-hyperbolic attractor, exponential decay of correlations, exact dimensionality, logarithm la

    Predicting Phenotypic Diversity and the Underlying Quantitative Molecular Transitions

    Get PDF
    During development, signaling networks control the formation of multicellular patterns. To what extent quantitative fluctuations in these complex networks may affect multicellular phenotype remains unclear. Here, we describe a computational approach to predict and analyze the phenotypic diversity that is accessible to a developmental signaling network. Applying this framework to vulval development in C. elegans, we demonstrate that quantitative changes in the regulatory network can render ~500 multicellular phenotypes. This phenotypic capacity is an order-of-magnitude below the theoretical upper limit for this system but yet is large enough to demonstrate that the system is not restricted to a select few outcomes. Using metrics to gauge the robustness of these phenotypes to parameter perturbations, we identify a select subset of novel phenotypes that are the most promising for experimental validation. In addition, our model calculations provide a layout of these phenotypes in network parameter space. Analyzing this landscape of multicellular phenotypes yielded two significant insights. First, we show that experimentally well-established mutant phenotypes may be rendered using non-canonical network perturbations. Second, we show that the predicted multicellular patterns include not only those observed in C. elegans, but also those occurring exclusively in other species of the Caenorhabditis genus. This result demonstrates that quantitative diversification of a common regulatory network is indeed demonstrably sufficient to generate the phenotypic differences observed across three major species within the Caenorhabditis genus. Using our computational framework, we systematically identify the quantitative changes that may have occurred in the regulatory network during the evolution of these species. Our model predictions show that significant phenotypic diversity may be sampled through quantitative variations in the regulatory network without overhauling the core network architecture. Furthermore, by comparing the predicted landscape of phenotypes to multicellular patterns that have been experimentally observed across multiple species, we systematically trace the quantitative regulatory changes that may have occurred during the evolution of the Caenorhabditis genus

    Music-of-Light Stethoscope: A Demonstration of the Photoacoustic Effect

    Get PDF
    In this paper we present a system aimed at demonstrating the photoacoustic (PA) effect for educational purposes. PA imaging is a hybrid imaging modality that requires no contrast agent and has a great potential for spine and brain lesion characterisation, breast cancer and blood flow monitoring notably in the context of fetal surgery. It relies on combining light excitation with ultrasound reception. Our brief was to present and explain PA imaging in a public-friendly way suitable for a variety of ages and backgrounds. We developed a simple, accessible demonstration unit using readily available materials. We used a modulated light emitting diode (LED) torch and an electronic stethoscope. The output of a music player was used for light modulation and the chest piece of the stethoscope covered by a black tape was used as an absorbing target and an enclosed chamber. This demonstration unit was presented to the public at the Bloomsbury Festival On Light in October 2015. Our stall was visited by over 100 people of varying ages. Twenty families returned in-depth evaluation questionnaires, which show that our explanations of the photoacoustic effect were well understood. Their interest in biomedical engineering was increased

    Pollen Nightmare: Elevated Airborne Pollen Levels at Night

    Get PDF
    High airborne pollen concentrations are generally associated with daylight hours when it is sunny and warm and plants release pollen into the air (Alcázar et al. 1999; Dahl et al. 2013). In contrast, cooler night-time periods are usually considered to be the time of low-allergy risk. This opinion is often reflected in pollen allergy avoidance strategies presented by the media, where the most commonly repeated recommendation is to stay indoors during the day and plan outdoor activities for the evening. However, there is evidence to suggest that elevated concentrations of airborne pollen might also occur during the evening (e.g. Norris-Hill and Emberlin 1991). So, is the night really a time of low-allergy risk? We present the results of the comparative analysis of pollen concentrations during daytime and night-time hours for five allergenic pollen types (Burbach et al. 2009), i.e. alder (Alnus sp.), birch (Betula sp.), grasses (Poaceae), mugwort (Artemisia sp.) and ragweed (Ambrosia sp.)

    Increasing condom use in heterosexual men: development of a theory-based interactive digital intervention

    Get PDF
    Increasing condom use to prevent sexually transmitted infections is a key public health goal. Interventions are more likely to be effective if they are theory- and evidence-based. The Behaviour Change Wheel (BCW) provides a framework for intervention development. To provide an example of how the BCW was used to develop an intervention to increase condom use in heterosexual men (the MenSS website), the steps of the BCW intervention development process were followed, incorporating evidence from the research literature and views of experts and the target population. Capability (e.g. knowledge) and motivation (e.g. beliefs about pleasure) were identified as important targets of the intervention. We devised ways to address each intervention target, including selecting interactive features and behaviour change techniques. The BCW provides a useful framework for integrating sources of evidence to inform intervention content and deciding which influences on behaviour to target

    Assimilation of healthy and indulgent impressions from labelling influences fullness but not intake or sensory experience

    Get PDF
    Background: Recent evidence suggests that products believed to be healthy may be over-consumed relative to believed indulgent or highly caloric products. The extent to which these effects relate to expectations from labelling, oral experience or assimilation of expectations is unclear. Over two experiments, we tested the hypotheses that healthy and indulgent information could be assimilated by oral experience of beverages and influence sensory evaluation, expected satiety, satiation and subsequent appetite. Additionally, we explored how expectation-experience congruency influenced these factors. Results: Results supported some assimilation of healthiness and indulgent ratings—study 1 showed that indulgent ratings enhanced by the indulgent label persisted post-tasting, and this resulted in increased fullness ratings. In study 2, congruency of healthy labels and oral experience promoted enhanced healthiness ratings. These healthiness and indulgent beliefs did not influence sensory analysis or intake—these were dictated by the products themselves. Healthy labels, but not experience, were associated with decreased expected satiety. Conclusions: Overall labels generated expectations, and some assimilation where there were congruencies between expectation and experience, but oral experience tended to override initial expectations to determine ultimate sensory evaluations and intake. Familiarity with the sensory properties of the test beverages may have resulted in the use of prior knowledge, rather than the label information, to guide evaluations and behaviour
    corecore