45 research outputs found

    The acute mania of King George III: A computational linguistic analysis.

    Get PDF
    We used a computational linguistic approach, exploiting machine learning techniques, to examine the letters written by King George III during mentally healthy and apparently mentally ill periods of his life. The aims of the study were: first, to establish the existence of alterations in the King's written language at the onset of his first manic episode; and secondly to identify salient sources of variation contributing to the changes. Effects on language were sought in two control conditions (politically stressful vs. politically tranquil periods and seasonal variation). We found clear differences in the letter corpus, across a range of different features, in association with the onset of mental derangement, which were driven by a combination of linguistic and information theory features that appeared to be specific to the contrast between acute mania and mental stability. The paucity of existing data relevant to changes in written language in the presence of acute mania suggests that lexical, syntactic and stylometric descriptions of written discourse produced by a cohort of patients with a diagnosis of acute mania will be necessary to support the diagnosis independently and to look for other periods of mental illness of the course of the King's life, and in other historically significant figures with similarly large archives of handwritten documents

    SMAD4 - Molecular gladiator of the TGF-β signaling is trampled upon by mutational insufficiency in colorectal carcinoma of Kashmiri population: an analysis with relation to KRAS proto-oncogene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development and progression of colorectal cancer has been extensively studied and the genes responsible have been well characterized. However the correlation between the <it>SMAD4 </it>gene mutations with <it>KRAS </it>mutant status has not been explored by many studies so far. Here, in this study we aimed to investigate the role of <it>SMAD4 </it>gene aberrations in the pathogenesis of CRC in Kashmir valley and to correlate it with various clinicopathological variables and <it>KRAS </it>mutant genotype.</p> <p>Methods</p> <p>We examined the paired tumor and normal tissue specimens of 86 CRC patients for the occurrence of aberrations in MCR region of <it>SMAD4 </it>and exon 1 of <it>KRAS </it>by PCR-SSCP and/or PCR-Direct sequencing.</p> <p>Results</p> <p>The overall mutation rate of mutation cluster region (MCR) region of <it>SMAD4 </it>gene among 86 patients was 18.6% (16 of 86). 68.75% (11/16) of the <it>SMAD4 </it>gene mutants were found to have mutations in <it>KRAS </it>gene as well. The association between the <it>KRAS </it>mutant genotype with <it>SMAD4 </it>mutants was found to be significant (P =< 0.05). Further more, we found a significant association of tumor location, tumor grade, node status, occupational exposure to pesticides and bleeding PR/Constipation with the mutation status of the <it>SMAD4 </it>gene (P =< 0.05).</p> <p>Conclusion</p> <p>Our study suggests that <it>SMAD4 </it>gene aberrations are the common event in CRC development but play a differential role in the progression of CRC in higher tumor grade (C+D) and its association with the <it>KRAS </it>mutant status suggest that these two molecules together are responsible for the progression of the tumor to higher/advanced stage.</p

    Human Genome-Wide RNAi Screen for Host Factors That Modulate Intracellular Salmonella Growth

    Get PDF
    Salmonella enterica is a bacterial pathogen of humans that can proliferate within epithelial cells as well as professional phagocytes of the immune system. While much has been learned about the microbial genes that influence the infectious process through decades of intensive research, relatively little is known about the host factors that affect infection. We performed a genome-wide siRNA screen to identify host genes that Salmonella enterica serovar Typhimurium (S. typhimurium) utilizes to facilitate growth within human epithelial cells. In this screen, with siRNAs targeting every predicted gene in the human genome, we identified 252 new human-host-susceptibility factors (HSFs) for S. typhimurium. We also identified 39 genes whose silencing results in increased intracellular growth of S. typhimurium. The HSFs identified are regulated most centrally by NFκB and associate with each other through an extremely dense network of interactions that center around a group of kinases. Most genes identified were not previously appreciated as playing roles in the intracellular lifecycle of S. enterica. Numerous HSFs identified with interesting characteristics that could play plausible roles in mediating intracellular microbial growth are discussed. Importantly, this study reveals significant overlap between the host network that supports S. typhimurium growth within human epithelial cells and the one that promotes the growth of Mycobacterium tuberculosis within human macrophages. In addition to providing much new information about the molecular mechanisms underlying S. enterica-host cell interplay, all 252 HSFs identified are candidates for new anti-microbial targets for controlling S. enterica infections, and some may provide broad-spectrum anti-microbial activity

    A Genome-Wide Study of Cytogenetic Changes in Colorectal Cancer Using SNP Microarrays: Opportunities for Future Personalized Treatment

    Get PDF
    In colorectal cancer (CRC), chromosomal instability (CIN) is typically studied using comparative-genomic hybridization (CGH) arrays. We studied paired (tumor and surrounding healthy) fresh frozen tissue from 86 CRC patients using Illumina's Infinium-based SNP array. This method allowed us to study CIN in CRC, with simultaneous analysis of copy number (CN) and B-allele frequency (BAF) - a representation of allelic composition. These data helped us to detect mono-allelic and bi-allelic amplifications/deletion, copy neutral loss of heterozygosity, and levels of mosaicism for mixed cell populations, some of which can not be assessed with other methods that do not measure BAF. We identified associations between CN abnormalities and different CRC phenotypes (histological diagnosis, location, tumor grade, stage, MSI and presence of lymph node metastasis). We showed commonalities between regions of CN change observed in CRC and the regions reported in previous studies of other solid cancers (e.g. amplifications of 20q, 13q, 8q, 5p and deletions of 18q, 17p and 8p). From Therapeutic Target Database, we identified relevant drugs, targeted to the genes located in these regions with CN changes, approved or in trials for other cancers and common diseases. These drugs may be considered for future therapeutic trials in CRC, based on personalized cytogenetic diagnosis. We also found many regions, harboring genes, which are not currently targeted by any relevant drugs that may be considered for future drug discovery studies. Our study shows the application of high density SNP arrays for cytogenetic study in CRC and its potential utility for personalized treatment

    Poorer outcome in stromal HIF-2α- and CA9-positive colorectal adenocarcinomas is associated with wild-type TP53 but not with BNIP3 promoter hypermethylation or apoptosis

    Get PDF
    Stromal expression of hypoxia inducible factor 2α (HIF-2α) and carbonic anhydrase 9 (CA9) are associated with a poorer prognosis in colorectal cancer (CRC). Tumour cell death, regulated by a hypoxic stromal microenvironment, could be of importance in this respect. Therefore, we correlated apoptosis, TP53 mutational status and BNIP3 promoter hypermethylation of CRC cells with HIF-2α- and CA9-related poor outcome. In a series of 195 CRCs, TP53 mutations in exons 5–8 were analysed by direct sequencing, and promoter hypermethylation of BNIP3 was determined by methylation-specific PCR. Expressions of HIF-2α, CA9, p53, BNIP3 and M30 were analysed immunohistochemically. Poorer survival of HIF-2α and CA9 stromal-positive CRCs was associated with wild-type TP53 (P=0.001 and P=0.0391), but not with BNIP3 methylation. Furthermore, apoptotic levels were independent of the TP53 status, but lower in unmethylated BNIP3 CRCs (P=0.004). It appears that wild-type TP53 in CRC cells favours the progression of tumours expressing markers for hypoxia in their stroma, rather than in the epithelial compartment. Preserved BNIP3 function in CRC cells lowers apoptosis, and may thus be involved in alternative cell death pathways, such as autophagic cell death. However, BNIP3 silencing in tumour cells does not impact on hypoxia-driven poorer prognosis

    Disruption of Yarrowia lipolytica TPS1 Gene Encoding Trehalose-6-P Synthase Does Not Affect Growth in Glucose but Impairs Growth at High Temperature

    Get PDF
    We have cloned the Yarrowia lipolytica TPS1 gene encoding trehalose-6-P synthase by complementation of the lack of growth in glucose of a Saccharomyces cerevisiae tps1 mutant. Disruption of YlTPS1 could only be achieved with a cassette placed in the 3′half of its coding region due to the overlap of its sequence with the promoter of the essential gene YlTFC1. The Yltps1 mutant grew in glucose although the Y. lipolytica hexokinase is extremely sensitive to inhibition by trehalose-6-P. The presence of a glucokinase, insensitive to trehalose-6-P, that constitutes about 80% of the glucose phosphorylating capacity during growth in glucose may account for the growth phenotype. Trehalose content was below 1 nmol/mg dry weight in Y. lipolytica, but it increased in strains expressing YlTPS1 under the control of the YlTEF1promoter or with a disruption of YALI0D15598 encoding a putative trehalase. mRNA levels of YlTPS1 were low and did not respond to thermal stresses, but that of YlTPS2 (YALI0D14476) and YlTPS3 (YALI0E31086) increased 4 and 6 times, repectively, by heat treatment. Disruption of YlTPS1 drastically slowed growth at 35°C. Homozygous Yltps1 diploids showed a decreased sporulation frequency that was ascribed to the low level of YALI0D20966 mRNA an homolog of the S. cerevisiae MCK1 which encodes a protein kinase that activates early meiotic gene expression

    Characterising chromosome rearrangements: recent technical advances in molecular cytogenetics

    Get PDF
    Genomic rearrangements can result in losses, amplifications, translocations and inversions of DNA fragments thereby modifying genome architecture, and potentially having clinical consequences. Many genomic disorders caused by structural variation have initially been uncovered by early cytogenetic methods. The last decade has seen significant progression in molecular cytogenetic techniques, allowing rapid and precise detection of structural rearrangements on a whole-genome scale. The high resolution attainable with these recently developed techniques has also uncovered the role of structural variants in normal genetic variation alongside single-nucleotide polymorphisms (SNPs). We describe how array-based comparative genomic hybridisation, SNP arrays, array painting and next-generation sequencing analytical methods (read depth, read pair and split read) allow the extensive characterisation of chromosome rearrangements in human genomes
    corecore