7,483 research outputs found

    Genetic diversity and selective breeding of red common carps in China

    Get PDF
    China has a very rich genetic diversity in common carp (Cyprinus carpio) and the red common carp plays an important role in Chinese aquaculture and genetic studies. Selective breeding, particularly crossbreeding has been applied successfully to red common carps in China, and the products of these efforts have been in commercial use since the 1970s. However, knowledge of the quantitative and molecular genetics of these carps is limited. Studies were therefore undertaken to: (1) understand the genetic diversity and genetic relationship of red common carps in China; (2) understand the inheritance of color phenotype of Oujiang color carp; (3) select stable Oujiang color carp with fast growth rate and ornamental Oujiang color carp comparable with the Koi common carp from Japan; (4) study the culture performance and culture systems suitable for the Oujiang color carp in cages and paddies; (5) extend better quality fish and appropriate culture systems for small scale fish farmers in poor areas

    A Robust Rational Route to in a Simple Asset Pricing Model (revised March 2004)

    Get PDF
    We investigate asset pricing dynamics in an adaptive evolutionary asset pricing model with fundamentalists, trend followers and a market maker. Agents can choose between a fundamentalist strategy at positive information cost or choose a trend following strategy for free. Price adjustment is proportional to the excess demand in the asset market. Agents asynchronously update their strategy according to realized net profits in the recent past. As agents become more sensitive to differences in strategy performance, the fundamental steady state becomes unstable and multiple steady states may arise. As the traders' sensitivity to differences in fitness increases, a bifurcation route to chaos sets in due to homoclinic bifurcations of stable and unstable manifolds of the fundamental steady state.

    Quantum tunneling time

    Full text link
    A simple model of a quantum clock is applied to the old and controversial problem of how long a particle takes to tunnel through a quantum barrier. The model I employ has the advantage of yielding sensible results for energy eigenstates, and does not require the use of time-dependant wave packets. Although the treatment does not forbid superluminal tunneling velocities, there is no implication of faster-than-light signaling because only the transit duration is measurable, not the absolute time of transit. A comparison is given with the weak-measurement post-selection calculations of Steinberg.Comment: 10 pages, no figures, research pape

    Entanglement, quantum phase transition and scaling in XXZ chain

    Full text link
    Motivated by recent development in quantum entanglement, we study relations among concurrence CC, SUq_q(2) algebra, quantum phase transition and correlation length at the zero temperature for the XXZ chain. We find that at the SU(2) point, the ground state possess the maximum concurrence. When the anisotropic parameter Δ\Delta is deformed, however, its value decreases. Its dependence on Δ\Delta scales as C=C0C1(Δ1)2C=C_0-C_1(\Delta-1)^2 in the XY metallic phase and near the critical point (i.e. 1<Δ<1.31<\Delta<1.3) of the Ising-like insulating phase. We also study the dependence of CC on the correlation length ξ\xi, and show that it satisfies C=C01/2ξC=C_0-1/2\xi near the critical point. For different size of the system, we show that there exists a universal scaling function of CC with respect to the correlation length ξ\xi.Comment: 4 pages, 3 figures. to appear in Phys. Rev.

    Dynamics of heavy-Rydberg ion-pair formation in K(14p,20p)-SF6, CCl4ᅠcollisions

    Get PDF
    The dynamics of formation of heavy-Rydberg ion-pair states throughᅠelectron transferᅠin K(np)-SF6, CCl4ᅠcollisions is examined byᅠmeasuringᅠtheᅠvelocity,ᅠangular, and bindingᅠenergyᅠdistributions of the product ion pairs. The results areᅠanalyzedᅠwith the aid of a Monte Carlo collision code that models both the initial electron capture and the subsequent evolution of the ion pairs. The model simulations are in good agreement with the experimental data and highlight the factors such asᅠRydberg atomᅠsize, the kineticᅠenergyᅠof relativeᅠmotionᅠof theᅠRydberg atomᅠand target particle, and (in the case of attaching targets that dissociate) the energetics ofᅠdissociationᅠthat can be used to control the properties of the product ion-pair states

    Thermal and ground-state entanglement in Heisenberg XX qubit rings

    Get PDF
    We study the entanglement of thermal and ground states in Heisernberg XXXX qubit rings with a magnetic field. A general result is found that for even-number rings pairwise entanglement between nearest-neighbor qubits is independent on both the sign of exchange interaction constants and the sign of magnetic fields. As an example we study the entanglement in the four-qubit model and find that the ground state of this model without magnetic fields is shown to be a four-body maximally entangled state measured by the NN-tangle.Comment: Four pages and one figure, small change

    Quantum secure communication scheme with W state

    Full text link
    Recently, Cao et al. proposed a new quantum secure direct communication scheme using W state. In their scheme, the error rate introduced by an eavesdropper who takes intercept-resend attack, is only 8.3%. Actually, their scheme is just a quantum key distribution scheme because the communication parties first create a shared key and then encrypt the secret message using one-time pad. We then present a quantum secure communication scheme using three-qubit W state. In our scheme, the error rate is raised to 25% and it is not necessary for the present scheme to use alternative measurement or Bell basis measurement. We also show our scheme is unconditionally secure.Comment: Comments are welcom

    Jordan-Wigner Approach to Dynamic Correlations in 2D Spin-1/2 Models

    Full text link
    We discuss the dynamic properties of the square-lattice spin-1/2 XY model obtained using the two-dimensional Jordan-Wigner fermionization approach. We argue the relevancy of the fermionic picture for interpreting the neutron scattering measurements in the two-dimensional frustrated quantum magnet Cs_2CuCl_4.Comment: Presented at 12-th Czech and Slovak Conference on Magnetism, Ko\v{s}ice, 12-15 July 200

    Revisiting the Bs()B^{(*)}_s-Meson Production at the Hadronic Colliders

    Full text link
    The production of heavy-flavored hadron at the hadronic colliders provides a challenging opportunity to test the validity of pQCD predictions. There are two mechanisms for the Bs()B^{(*)}_s hadroproduction, i.e. the gluon-gluon fusion mechanism via the subprocess g+gBs()+b+sˉg+g\rightarrow B^{(*)}_s+b+\bar{s} and the extrinsic heavy quark mechanism via the subprocesses g+bˉBs()+sˉg+\bar{b}\to B^{(*)}_s +\bar{s} and g+sBs()+bg+s\to B^{(*)}_s +b, both of which shall have sizable contributions in proper kinematic region. Different from the fixed-flavor-number scheme (FFNS) previously adopted in the literature, we study the Bs()B^{(*)}_s hadroproduction under the general-mass variable-flavor-number scheme (GM-VFNS), in which we can consistently deal with the double counting problem from the above two mechanisms. Properties for the Bs()B^{(*)}_s hadroproduction are discussed. To be useful reference, a comparative study of FFNS and GM-VFNS is presented. Both of which can provide reasonable estimations for the Bs()B^{(*)}_s hadroproduction. At the Tevatron, the difference between these two schemes is small, however such difference is obvious at the LHC. The forthcoming more precise data on LHC shall provide a good chance to check which scheme is more appropriate to deal with the Bs()B^{(*)}_s-meson production and to further study the heavy quark components in hadrons.Comment: 18 pages, 8 figures, 4 tables. To match the published version. To be published in Eur.Phys.J.

    On Bures fidelity of displaced squeezed thermal states

    Get PDF
    Fidelity plays a key role in quantum information and communication theory. Fidelity can be interpreted as the probability that a decoded message possesses the same information content as the message prior to coding and transmission. In this paper, we give a formula of Bures fidelity for displaced squeezed thermal states directly by the displacement and squeezing parameters and birefly discuss how the results can apply to quantum information theory.Comment: 10 pages with RevTex require
    corecore