9 research outputs found

    BIOSCAN-1M Insect Dataset

    No full text
    In an effort to catalog insect biodiversity, we propose a new large dataset of hand-labelled insect images, the BIOSCAN-1M Insect Dataset. Each record is taxonomically classified by an expert, and also has associated genetic information including raw nucleotide barcode sequences and assigned barcode index numbers, which are genetically-based proxies for species classification. This paper presents a curated million-image dataset, primarily to train computer-vision models capable of providing image-based taxonomic assessment, however, the dataset also presents compelling characteristics, the study of which would be of interest to the broader machine learning community. Driven by the biological nature inherent to the dataset, a characteristic long-tailed class-imbalance distribution is exhibited. Furthermore, taxonomic labelling is a hierarchical classification scheme, presenting a highly fine-grained classification problem at lower levels. Beyond spurring interest in biodiversity research within the machine learning community, progress on creating an image-based taxonomic classifier will also further the ultimate goal of all BIOSCAN research: to lay the foundation for a comprehensive survey of global biodiversity

    DSC and elastic moduli studies on tellurite-vanadate glasses containing antimony oxide

    No full text
    xSb2O3-40TeO2-(60 − x) V2O5 glasses with 0 ≤ x ≤ 10 (in mol%) have been prepared by rapid- melt quenching method. DSC curves of these ternary glasses have been investigated. The glass transition properties that have been measured and reported in this paper, include the glass transition temperature (Tg), glass transition width (ΔTg), heat capacity change at glass transition (ΔCP) and fragility (F). Thermal stability, Poisson’s ratio, fragility and glass forming tendency of these glasses have been estimated, to determine relationship between chemical composition and the thermal stability or to interpret the structure of glass. In addition, Makishima and Makenzie’s theory was applied for determination of Young’s modulus, bulk modulus and shear modulus, indicating a strong relation between elastic properties and structure of glass. Generally, results of this work show that glass with x = 0 has the highest shear, bulk and Young’s moduli which make it as suitable candidate for the manufacture of strong glass fibers in technological applications; but it should be mentioned that glass with x = 8 has higher handling temperature and super resistance against thermal attack

    Atom Probe Tomography at The University of Sydney

    No full text
    Summary: The Australian Microscopy & Microanalysis Research Facility (AMMRF) operates a national atom probe laboratory at The University of Sydney. This paperprovides a brief review and update of the technique of atom probe tomography (APT),together with a summary of recent research applications at Sydney in the scienceand technology of materials. We describe recent instrumentation advances such asthe use of laser pulsing to effect time-controlled field evaporation, the introductionof wide field of view detectors, where the solid angle for observation is increased byup to a factor of ∼20 as well as innovations in specimen preparation. We concludethat these developments have opened APT to a range of new materials that werepreviously either difficult or impossible to study using this technique because of theirpoor conductivity or brittleness
    corecore