3 research outputs found
An evaluation of COVID-19 serological assays informs future diagnostics and exposure assessment
The world is entering a new era of the COVID-19 pandemic in which there is an increasing call for reliable antibody testing. To support decision making on the deployment of serology for either population screening or diagnostics, we present a detailed comparison of serological COVID-19 assays. We show that among the selected assays there is a wide diversity in assay performance in different scenarios and when correlated to virus neutralizing antibodies. The Wantai ELISA detecting total immunoglobulins against the receptor binding domain of SARS CoV-2, has the best overall characteristics to detect functional antibodies in different stages and severity of disease, including the potential to set a cut-off indicating the presence of protective antibodies. The large variety of available serological assays requires proper assay validation before deciding on deployment of assays for specific applications
Replication Kinetics, Cell Tropism, and Associated Immune Responses in SARS-CoV-2- and H5N1 Virus-Infected Human Induced Pluripotent Stem Cell-Derived Neural Models
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a wide variety of neurological complications. Even though SARS-CoV-2 is rarely detected in the central nervous system (CNS) or cerebrospinal fluid, evidence is accumulating
Temporal Kinetics of RNAemia and Associated Systemic Cytokines in Hospitalized COVID-19 Patients
COVID-19 is associated with a wide range of extrarespiratory complications, of which the pathogenesis is currently not fully understood. However, both systemic spread and systemic inflammatory responses are thought to contribute to the systemic pathogenesis. In this study, we determined the temporal kinetics of viral RNA in serum (RNAemia) and the associated inflammatory cytokines and chemokines during the course of COVID-19 in hospitalized patients. We show that RNAemia can be detected in 90% of the patients who develop critical disease, compared to 50% of the patients who develop moderate or severe disease. Furthermore, RNAemia lasts longer in patients who develop critical disease. Elevated levels of interleukin-10 (IL-10) and MCP-1-but not IL-6-are associated with viral load in serum, whereas higher levels of IL-6 in serum were associated with the development of critical disease. In conclusion, RNAemia is common in hospitalized patients, with the highest frequency and duration in patients who develop critical disease. The fact that several cytokines or chemokines are directly associated with the presence of viral RNA in the circulation suggests that the development of RNAemia is an important factor in the systemic pathogenesis of COVID-19. IMPORTANCE Severe COVID-19 can be considered a systemic disease as many extrarespiratory complications occur. However, the systemic pathogenesis is poorly understood. Here, we show that the presence of viral RNA in the blood (RNAemia) occurs more frequently in patients who develop critical disease, compared to patients with moderate or severe disease. In addition, RNAemia is associated with increased levels of inflammatory cytokines and chemokines, like MCP-1 and IL-10, in serum during the course of disease. This suggests that extrarespiratory spread of SARS-CoV-2 contributes to systemic inflammatory responses, which are an important factor in the systemic pathogenesis of COVID-19.</p