18 research outputs found

    Long‐term trends in the distribution, abundance and impact of native “injurious” weeds

    Get PDF
    Questions: How can we quantify changes in the distribution and abundance of injurious weed species (Senecio jacobaea, Cirsium vulgare, Cirsium arvense, Rumex obtusifolius, Rumex crispus and Urtica dioica), over long time periods at wide geographical scales? What impact do these species have on plant communities? To what extent are changes driven by anthropogenically induced drivers such as disturbance, eutrophication and management? Location: Great Britain. Methods: Data from national surveys were used to assess changes in the frequency and abundance of selected weed species between 1978 and 2007. This involved novel method development to create indices of change, and to relate changes in distribution and abundance of these species to plant community diversity and inferred changes in resource availability, disturbance and management. Results: Three of the six weed species became more widespread in GB over this period and all of them increased in abundance (in grasslands, arable habitats, roadsides and streamsides). Patterns were complex and varied by landscape context and habitat type. For most of the species, there were negative relationships between abundance, total plant species richness, grassland, wetland and woodland indicators. Each individual species responds to a different combination of anthropogenic drivers but disturbance, fertility and livestock management significantly influenced most species. Conclusions: The increase in frequency and abundance of weeds over decades has implications for landscape‐scale plant diversity, fodder yield and livestock health. This includes reductions in plant species richness, loss of valuable habitat specialists and homogenisation of vegetation communities. Increasing land‐use intensity, excessive nutrient input, overgrazing, sward damage, poaching and bare ground in fields and undermanagement or too frequent cutting on linear features may have led to increases in weeds. These weeds do have conservation value so we are not advocating eradication, rather co‐existence, without dominance. Land management policy needs to adapt to benefit biodiversity and agricultural productivity

    Consequences for host-parasitoid interactions of grazing-dependent habitat heterogeneity

    No full text
    1. Environmental heterogeneity can produce effects that cascade up to higher trophic levels and affect species interactions. We hypothesized that grazing-dependent habitat heterogeneity and grazing-independent host plant heterogeneity would influence directly and indirectly a host–parasitoid interaction in a woodland habitat. 2. Thistles were planted randomly in 20 birch woodlands, half of which are grazed by cattle. The abundances of two species of seed herbivore and their shared parasitoid were measured, and related to habitat and host-plant heterogeneity. 3. The presence of cattle grazing created a structurally and compositionally distinct plant assemblage from the ungrazed seminatural situation. Grazing did not affect the number or dispersion of the host plant underpinning the host–parasitoid interaction. 4. The density of one insect herbivore, Tephritis conura, and its parasitoid Pteromalus elevatus was significantly increased by the presence of cattle; but another herbivore, Xyphosia miliaria, was unaffected. The percentage of parasitism of T. conura was increased in grazed habitat occurring at twice the rate found in ungrazed habitat. 5. The increase in T. conura abundance was correlated with increased species richness and cover of forbs in grazed sites. This effect of grazing-dependent habitat variation on host insect density cascaded up to parasitoid density and percentage of parasitism. Habitat heterogeneity had a further direct, positive effect on parasitoid density and percentage of parasitism after controlling for host-insect density. 6. Independent of grazing, heterogeneity in host-plant flowering, architecture and stature further affected T. conura and its parasitoid's densities. Parasitoid density was also affected by the dispersion of the host plant. 7. A combination of habitat and host-plant scale environmental heterogeneity influenced a host–parasitoid interaction indirectly and directly, providing a rare example of an anthropogenic disturbance positively affecting a tertiary trophic level. This finding highlights the need to consider not only the importance of bottom-up effects for top-down processes, but also the role of environmental heterogeneity arising from anthropogenic disturbance for trophic interactions such as parasitism
    corecore