28 research outputs found

    Beer health and Nutrition

    Full text link

    Abundant transcripts of malting barley identified by serial analysis of gene expression (SAGE)

    Full text link
    Serial analysis of gene expression (SAGE) was applied to the major cereal crop barley (Hordeum vulgare) to characterize the transcriptional profile of grain during the malting process. Seven SAGE libraries were generated from seed at different time points during malting, in addition to one library from dry mature seed. A total of 155 206 LongSAGE tags, representing 41 909 unique sequences, was generated. This study reports an in-depth analysis of the most abundant transcripts from each of eight specific time points in a malting barley time course. The 100 most abundant tags from each library were analysed to identify the putative functional role of highly abundant transcripts. The largest functional groups included transcripts coding for stress response and cell defence, ribosomal proteins and storage proteins. The most abundant tag represented B22EL8, a barley metallothionein, which showed significant up-regulation across the malting time course. Considerable changes in the abundance profiles of some of the highly abundant tags occurred at 24 h post-steeping, indicating that it may be an important time point for gene expression changes associated with barley seed germination

    Sulfites in beer: reviewing regulation, analysis and role

    Full text link
    ABSTRACT Beer is an extremely complex mixture of more than 3,000 different compounds in an aqueous environment. Thus, it is perhaps not surprising that the maintenance of beer quality throughout its lifetime has been a considerable challenge for brewers. Whilst it is inevitable that chemical changes will occur in beer with the passage of time, it is the formation of flavor-active components which is of immediate concern to an overview of beer shelf life stability. Sulfur dioxide has long been recognized by brewers as the most important factor in delaying flavor staling, and prolonging the shelf life of beer. However, nowadays, sulfur dioxide and sulfites are considered allergens and concerns about the safety of their use as food additives have been on the increase. The present review is structured into three main parts. Firstly, the chemical properties of sulfur dioxide are presented, along with the toxic effects and maximum legal levels permitted according to U.S. and EU legislation. As the accurate determination of the free, bound and total sulfur dioxide in beer is essential to ensuring regulatory compliance, several methods have been developed for analyzing sulfur dioxide in beer. Thus, secondly, various types of methods are reported and compared with the officially recommended ones. Finally, the crucial role of sulfite in the control of flavor instability of beer is discussed in light of the current data. Two courses of action have been proposed, which are elucidated in detail relating firstly to the fact that sulfite inhibits beer oxidation during storage by acting as an antioxidant and, secondly, sulfite reacts with the carbonyl staling compounds in beer, and thereby masks stale flavors
    corecore